DOI QR코드

DOI QR Code

저밀도 표면필름 구리망의 비행체 적용 가능성 연구

A Study on Applicability of Low-Density Surface Film Copper Mesh for Aircraft

  • 투고 : 2021.02.10
  • 심사 : 2021.09.27
  • 발행 : 2021.10.01

초록

본 논문에서는 저밀도 표면필름 구리망에 대한 비행체 적용 가능성을 분석하였다. 최근 기존 표면 필름 구리망에서 중량 및 비용을 절감할 수 있도록 표면 필름의 두께를 낮춘 저밀도 표면 필름 구리망이 개발되었다. 이러한 저밀도 표면필름 구리망을 비행체에 적용하기 위해서는 샌드위치 구조에서의 핀 홀 방지 효과와 같은 제작성 확인과 함께 적용 시 전자기 영향성에 대한 분석이 필요하다. 따라서 본 연구에서는 저밀도 필름 구리망 2종과 기존 비행체 적용 구리망 1종에 대해 제작성 및 전자기 영향성을 분석하였다. 표면 구리망에 대한 제작성은 샌드위치 복합재와 표면 구리망을 결합하여 핀 홀 방지효과를 확인하였다. 전자기 영향성 분석은 3D 전자기파 시뮬레이션을 통해 각 샘플에 대한 주기구조를 이용하여 해석하였으며, 자유공간 측정방법을 이용한 저밀도 필름 구리망의 전자기파 투과특성 측정결과를 통해 시뮬레이션 결과가 유효함을 확인하였다. 위 결과로 비행체 적용이 필요한 저밀도 표면필름 구리망에 대한 해석 및 비행체 적용 가능성을 판단할 수 있다.

In this paper, the applicability of the low-density surface film copper mesh for aircraft applications have been analyzed. Recently, low-density surface film copper mesh is developed to reduce weight and cost compared with traditional surface film copper mesh. In order to apply low-density surface film copper mesh to aircraft, it is needed to analyze its electromagnetic effects as well as structural integrity with sandwich panels to prevent pinholes. The structural integrity and electromagnetic characteristics have been analyzed for 2 samples of low-density surface film copper mesh and 1 sample of surface film copper mesh. To review the applicability of the low-density surface film, it is combined with sandwich composite panel to confirm pinhole effects. The low-density surface film has been modeled as a periodic structure and analyzed with 3D electromagnetic simulation tool. The simulation results has been verified through measured electromagnetic transmission results using free space measurements. From the results, it will be possible to use these results for the analysis and the applicability of low-density surface film copper mesh for aircraft.

키워드

참고문헌

  1. Ham, M. R., Choi, H. S. and Choi, W. J., "A review on the advent of composite aircraft and the relevant technical problems," Journal of Korea Association of Defense Industry Studies, Vol. 16, No. 2, December 2009, pp. 259~283.
  2. Fisher, F. A., Plumer, J. A. and Perala, R. A., Aircraft Lightning Protection Handbook, Federal Aviation Administration, 1989.
  3. Kim, Y. T., Woo, H. C. and Kim, B. G., "A process of lightning analysis, protection design and verification for general military aircraft," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 303~304.
  4. Hyun, S. Y., Song, Y. H., Jeoun, Y. M. and Kim, B. G., "Analysis method of electromagnetic Transmission Characteristics for Carbon Fiber Reinforced Plastics Sandwich Structure," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, July 2020, pp. 369~370.
  5. Munk, B. A., Frequency Selective Surface: Theory and Design, Newyork: Wiley-Interscience, 2000.
  6. MIL-STD-464C, "Electromagnetic Environment Effects Requirements for System," DoD, 2010.
  7. Woo, H. C., Kim, Y. T., Jeoun, Y. M. and Kim, B. G., "A study on the external RF electromagnetic environment test of unmanned aerial vehicle," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2019, pp. 540~541.