DOI QR코드

DOI QR Code

감시정찰 임무 자율화를 위한 무인기의 의사결정 시스템

Decision-Making System of UAV for ISR Mission Level Autonomy

  • 투고 : 2021.07.09
  • 심사 : 2021.09.01
  • 발행 : 2021.10.01

초록

무인기를 위한 자율 시스템은 임무 목표, 임무 상황, 무인기의 상태를 기반으로, 목표 달성을 위해 현재 수행할 행동을 결정하는 의사결정 능력을 가진다. 본 논문에서는 지형 충돌 위험이 있는 저고도 운용, 방문 순서를 변경하지 않아야 하는 항로점 집합, 임무 대상 객체의 위치 불확실성 등 현실적인 제약조건 하에서 감시정찰 임무를 자율적으로 수행할 수 있는 의사결정 시스템과 이러한 특성을 효과적으로 표현할 수 있는 임무 정의를 제시한다. 제안한 의사결정 시스템을 Hardware-In-the-Loop Simulation 환경에서 현실적인 임무 상황을 반영한 3종의 시나리오를 통해 검증한다. 무인기의 비행 경로와 임무 상황에서 의사결정 시스템이 선택한 행동을 시뮬레이션 결과로 제시하고, 그 결과를 논의한다.

Autonomous system for UAVs has a capability to decide an appropriate current action to achieve the goal based on the ultimate mission goal, context of mission, and the current state of the UAV. We propose a decision-making system that has an ability to operate ISR mission autonomously under the realistic limitation such as low altitude operation with high risk of terrain collision, a set of way points without change of visit sequence not allowed, and position uncertainties of the objects for the mission. The proposed decision-making system is loaded to a Hardware-In-the-loop Simulation environment, then tested and verified using three representative scenarios with a realistic mission environment. The flight trajectories of the UAV and selected actions via the proposed decision-making system are presented as the simulation results with discussion.

키워드

참고문헌

  1. Ambrose, R., Nesnas, I. A. D., Chandler, F., Allen, B. D., Fong, T., Matthies, L. and Mueller, R., NASA technology roadmaps: TA 4: Robotics and autonomous systems, NASA, Washington DC, 2015, pp. 50~51.
  2. Zhen, Z., Xing, D. and Gao, C, "Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm," Aerospace Science and Technology, Vol. 76, 2018, pp. 402~411. https://doi.org/10.1016/j.ast.2018.01.035
  3. Stecz, W. and Gromada, K., "UAV mission planning with SAR application," Sensors, Vol. 20, No. 4, 2020, p. 1080. https://doi.org/10.3390/s20041080
  4. Kotseruba, I. and Tsotsos, J. K., "40 years of cognitive architectures: core cognitive abilities and practical applications," Artificial Intelligence Review, Vol. 53, No. 1, 2020, pp. 17~94. https://doi.org/10.1007/s10462-018-9646-y
  5. Schwarting, W., Alonso-Mora, J. and Rus, D., "Planning and decision-making for autonomous vehicles," Annual Review of Control, Robotics, and Autonomous Systems, Vol. 1, 2018, pp. 187~210. https://doi.org/10.1146/annurev-control-060117-105157
  6. Atyabi, A., MahmoudZadeh, S. and Nefti-Meziani, S., "Current advancements on autonomous mission planning and management systems: An AUV and UAV perspective," Annual Reviews in Control, Vol. 46, 2018, pp. 196~215. https://doi.org/10.1016/j.arcontrol.2018.07.002
  7. Chang, W. H., Lee, S. G., Kim, Y. G. and Oh, T. G., "Autonomous Mission Management Software Design and Verification Technique for Unmanned Aerial Vehicles," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 6, 2021, pp. 505~513. https://doi.org/10.5139/JKSAS.2021.49.6.505
  8. Kim, Y., Gu, D. W. and Postlethwaite, I., "Real-time path planning with limited information for autonomous unmanned air vehicles," Automatica, Vol. 44, No. 3, 2008, pp. 696~712. https://doi.org/10.1016/j.automatica.2007.07.023
  9. Wierzbanowski, S., "Collaborative operations in denied environment (code)," DARPA,[Online]. Available: https://www.darpa.mil/program/collaborative-operations-in-deniedenvironment. [Accessed 06 10 2019], 2018.
  10. Boskovic, J., Jackson, J. A. and Wise, R., "Implementation & Flight Testing of the IMPACT System for Autonomous ISR," In AIAA Information Systems-AIAA Infotech@ Aerospace, 2017, p. 677.
  11. Gunetti, P., Thompson, H. and Dodd, T., "Simulation of a soar-based autonomous mission management system for unmanned aircraft," Journal of Aerospace Information Systems, Vol. 10, No. 2, 2013, pp. 53~70. https://doi.org/10.2514/1.53282
  12. Lee, H., Chang, W. and Jang, H., "Optimal path planning algorithm for visiting multiple mission points in dynamic environments," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 5, 2019, pp. 379~387. https://doi.org/10.5139/JKSAS.2019.47.5.379
  13. Gat, E., Bonnasso, R. P. and Murphy, R., "On three-layer architectures," Artificial intelligence and mobile robots, Vol. 195, 1998, p. 210.
  14. Tisdale, J., Kim, Z. and Hedrick, J. K., "Autonomous UAV path planning and estimation," IEEE Robotics & Automation Magazine, Vol. 16, No. 2, 2009, pp. 35~42. https://doi.org/10.1109/MRA.2009.932529
  15. Owen, M., Beard, R. and McLain, T., Implementing Dubins Airplane Paths on Fixed-wing UAVs, All Faculty Publications https://scholarsarchive.byu.edu/facpub/1900, 2014. pp. 1678~1687.
  16. LaValle, S. M., Planning algorithms, Cambridge university press, 2006.
  17. Kim, S., Oh, H. and Tsourdos, A., "Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 557~566.
  18. Uhm, T. W., Park, T. S. and Kim, S, K., "Autonomous Path Generation Method of Obstacle Avoidance for Small UAV using Linear Model Predictive Control," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2020, pp. 327~328.
  19. Lee, J. W., Kim, J. Y., Kim, J. K. and Kwon, C. H., "Tiny object recognition in Aerial imagery Using Convolution Neural Network," Summer Annual Conference of the Institute of Electronics and Information Engineers, August 2020, pp. 1990~1991.
  20. Lim, D., Park, J., Min, C., Jang, H. and Lee, D., "Layered Visibility Graph With Convex Hull to Avoid the Complex Terrain for UAV," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 12, 2019, pp. 874~880. https://doi.org/10.5139/JKSAS.2019.47.12.874
  21. Silver, D., et al, "Mastering the game of go without human knowledge," Nature, Vol. 550, No. 7676, 2017, pp. 354~359. https://doi.org/10.1038/nature24270
  22. Vinyals, O., et al, "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Vol. 575, No. 7782, 2019, pp. 350~354. https://doi.org/10.1038/s41586-019-1724-z
  23. Zhao, Y., Guo, J., Bai, C. and Zheng, H., "Reinforcement Learning-Based Collision Avoidance Guidance Algorithm for Fixed-Wing UAVs," Complexity, Vol. 2021, 2021.
  24. Park, S. G. and Kim D. H., "Autonomous Flying of Drone Based on PPO Reinforcement Learning Algorithm," Journal of Institute of Control, Robotics and Systems, Vol. 26, No. 11, 2020, pp. 955~963. https://doi.org/10.5302/J.ICROS.2020.20.0125