DOI QR코드

DOI QR Code

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes

고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계

  • Park, Hongyeol (Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University) ;
  • Lee, Jung Kyoo (Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University)
  • 박홍열 (동아대학교 화학공학과(BK21 FOUR Graduate Program)) ;
  • 이정규 (동아대학교 화학공학과(BK21 FOUR Graduate Program))
  • Received : 2021.08.13
  • Accepted : 2021.08.27
  • Published : 2021.09.30

Abstract

In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

실리콘은 상용 흑연(Graphite, Gr) 음극재 대비 약 10배 정도 높은 이론용량을 가지나 전기전도도가 낮고 충·방전 시 큰 부피변화로 수명이 짧은 문제가 있다. 실리콘의 문제점 해결 방안으로 전도성 탄소와 복합체 형성과정에서 실리카 나노입자 템플레이트를 이용해 복합체 내부에 이중 중공을 갖는 실리콘 나노입자/중공탄소(SiNP/HC) 소재를 제조하였다. 비교를 위해 중공을 갖지 않는 SiNP/C 복합체를 제조하여 SiNP/HC 복합체와의 물리·화학적 특성과 음극소재로서의 전기화학적 특성을 X-ray 회절기, X-선 광전자 분광기, 비표면적과 기공분포 분석을 위한 질소 흡/탈착 실험, 주사형 전자현미경 및 투과형 전자현미경으로 비교·분석하였다. SiNP/C 복합체 대비 SiNP/HC는 사이클 후에도 전극의 큰 부피변화 없이 월등히 우수한 수명특성과 효율을 보였다. 흑연과 혼합한 하이브리드형 SiNP/HC@Gr 복합체는 SiNP/HC와 비교해 낮은 용량에서 더욱 개선된 수명 특성과 효율을 보였다. 따라서 복합체 내부에 실리콘의 부피팽창을 수용하는 중공을 갖는 실리콘/탄소 복합체를 설계하는 것이 수명특성 확보에 유효함을 확인하였다. 복합체 내부에 많은 중공의 존재로 비표면적이 커서 과도한 SEI층 형성에 따른 낮은 초기 효율의 문제점이 있으므로 이에 대한 보완 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 동아대학교의 연구비 지원으로 수행되었으며 이에 감사합니다.

References

  1. Thackeray, M. M., Wolverton, C., and Isaacs, E. D., "Electrical Energy Storage for Transportation - Approaching the Limits of, and Going Beyond, Lithium-Ion Batteries," Energy Environ. Sci., 5(7), 7854-7863 (2012). https://doi.org/10.1039/c2ee21892e
  2. Lee, J. H., Yoon, C. S., Hwang, J. Y., Kim, S. J., Maglia, F., Lamp, P., Myung, S. T., and Sun, Y. K., "High-Energy-Density Lithium-Ion Battery Using a Carbon-Nanotube-Si Composite Anode and a Compositionally Graded LiNi0.85Co0.05Mn0.10O2 Cathode," Energy Environ. Sci., 9(6), 2152-2158 (2016). https://doi.org/10.1039/c6ee01134a
  3. Schmuch, R., Wagner, R., Horpel, G., Placke, T., and Winter, M., "Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries," Nat. Energy, 3(4), 267-278 (2018). https://doi.org/10.1038/s41560-018-0107-2
  4. Sun, Y. K., Chen, Z., Noh, H. J., Lee, D. J., Jung, H. G., Ren, Y., Wang, S., Yoon, C. S., Myung, S. T., and Amine, K., "Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries," Nat. Mater., 11(11), 942-947 (2012). https://doi.org/10.1038/nmat3435
  5. Manthiram, A., Knight, J. C., Myung, S. T., Oh, S. M., and Sun, Y. K., "Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives," Adv. Energy Mater., 6(1), 1501010 (2016). https://doi.org/10.1002/aenm.201501010
  6. Lee, J. K., Oh, C., Kim, N., Hwang, J. Y., and Sun, Y. K., "Rational Design of Silicon-Based Composites for High-Energy Storage Devices," J. Mater. Chem. A., 4(15), 5366-5384 (2016). https://doi.org/10.1039/C6TA00265J
  7. Huggins, R. A., "Lithium alloy negative electrodes," J. Power Sources, 81-82, 13-19 (1999). https://doi.org/10.1016/S0378-7753(99)00124-X
  8. Beattie, S. D., Larcher, D., Morcrette, M., Simon, B., and Tarascon, J. M., "Si Electrodes for Li-Ion Batteries - A New Way to Look at an Old Problem," J. Electrochem. Soc., 155(2), A158-A163 (2008). https://doi.org/10.1149/1.2817828
  9. Chae, C., Noh, H. J., Lee, J. K., Scrosati, B., and Sun, Y. K., "A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode," Adv. Funct. Mater., 24(20), 3036-3042 (2014). https://doi.org/10.1002/adfm.201303766
  10. Park, H., Yoon, N., Kang, D., Young, C., and Lee, J. K., "Electrochemical Characteristics and Energy Densities of Lithium-Ion Batteries Using Mesoporous Silicon and Graphite as Anodes," Electrochim. Acta, 357, 136870 (2020). https://doi.org/10.1016/j.electacta.2020.136870
  11. Yang, Y., McDowell, M. T., Jackson, A., Cha, J. J., Hong, S. S., and Cui, Y., "New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy," Nano Lett., 10(4), 1486-1491 (2010). https://doi.org/10.1021/nl100504q
  12. Lee, S. K., Oh, S. M., Park, E., Scrosati, B., Hassoun, J., Park, M. S., Kim, Y. J., Kim, H., Belharouak, I., and Sun, Y. K., "Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode," Nano Lett., 15(5), 2863-2868 (2015). https://doi.org/10.1021/nl504460s
  13. Obrovac, M. N., and Krause, L. J., "Reversible Cycling of Crystalline Silicon Powder," J. Electrochem. Soc., 154(2), A103-A108 (2006). https://doi.org/10.1149/1.2402112
  14. Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., and Yushin, G. J. N. M., "High-performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach," Nat. Mater., 9(4), 353-358 (2010). https://doi.org/10.1038/nmat2725
  15. Wu, H., Zheng, G., Liu, N., Carney, T. J., Yang, Y., and Cui, Y., "Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes," Nano Lett., 12(2), 904-909 (2012). https://doi.org/10.1021/nl203967r
  16. Hertzberg, B., Alexeev, A., and Yushin, G., "Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space," J. Am. Chem. Soc., 132(25), 8548-8549 (2010). https://doi.org/10.1021/ja1031997
  17. Liu, N., Lu, Z., Zhao, J., McDowell, M. T., Lee, H. W., Zhao, W., and Cui, Y., "A Pomegranate-Inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes," Nat. Nanotechnol., 9(3), 187-192 (2014). https://doi.org/10.1038/nnano.2014.6
  18. Kanzawa, Y., Hayashi, S., and Yamamoto, K., "Raman Spectroscopy of Si-rich SiO2 Films: Possibility of Si Cluster Formation," J. Phys.: Condens. Matter, 8(26), 4823-4835 (1996). https://doi.org/10.1088/0953-8984/8/26/014
  19. Reich, S., and Thomsen, C., Raman Spectroscopy of Graphite," Phil. Trans. R. Soc. A., 362(1824), 2271-2288 (2004). https://doi.org/10.1098/rsta.2004.1454
  20. Dalton, S., Heatley, F., and Budd, P. M., "Thermal Stabilization of Polyacrylonitrile Fibres," Polymer, 40(20), 5531-5543 (1999). https://doi.org/10.1016/S0032-3861(98)00778-2
  21. Kormann, M., Gerhard, H., and Popovska, N., "Comparative Study of Carbide-Derived Carbons Obtained from Biomorphic TiC and SiC Structures," Carbon, 47(1), 242-250 (2009). https://doi.org/10.1016/j.carbon.2008.10.002
  22. Kim, N., Park, H., Yoon, N., and Lee, J. K., "Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes," ACS Nano, 12(4), 3853-3864 (2018). https://doi.org/10.1021/acsnano.8b01129
  23. Yoon, N., Young, C., Kang, D., Park, H., and Lee, J. K., "High-Conversion Reduction Synthesis of Porous Silicon for Advanced Lithium Batteries," Electrochim. Acta, 391, 138967 (2021). https://doi.org/10.1016/j.electacta.2021.138967
  24. Li, P., Kim, H., Myung, S. T., and Sun, Y. K., "Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries," Energy Storage Mater., 35, 550-576 (2021). https://doi.org/10.1016/j.ensm.2020.11.028