DOI QR코드

DOI QR Code

A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand

Ni/sand를 이용한 폴리프로필렌 촉매 열분해 연구

  • Kim, Soo Hyun (Department of Mineral Resources and Energy engineering, Jeonbuk National University) ;
  • Lee, Roosse (Department of Mineral Resources and Energy engineering, Jeonbuk National University) ;
  • Sohn, Jung Min (Department of Mineral Resources and Energy engineering, Jeonbuk National University)
  • 김수현 (전북대학교 자원.에너지공학과) ;
  • 이루세 (전북대학교 자원.에너지공학과) ;
  • 손정민 (전북대학교 자원.에너지공학과)
  • Received : 2021.08.10
  • Accepted : 2021.08.27
  • Published : 2021.09.30

Abstract

In order to develop a novel system named "thermal medium and gas circulation type pyrolysis system," this study was conducted to obtain basic data for process simulation before performing the pyrolysis experiment. Polypropylene (PP) was chosen as model material in the basic pyrolysis experiment instead of waste plastic and fluidized sand (hereinafter referred to as "sand"), and it was used as a heat transfer material in the "thermal medium and gas circulation type pyrolysis system." Ni was impregnated as an active catalyst on the sand to promote catalytic pyrolysis. The basic physical properties of PP were analyzed using a thermogravimetric analyzer, and pyrolysis was performed at 600 ℃ in an N2 atmosphere to produce liquid oil. The distribution of the carbon number of the liquid oil generated through the catalytic pyrolysis reaction was analyzed using GC/MS. We investigated the effects of varying the pyrolysis space velocity and catalyst amount on the yield of liquid oil and the carbon number distribution of the liquid oil. Using Ni/sand, the yield of liquid oil was increased except with the pyrolysis condition of 10 wt% Ni/sand at a space velocity of 30,000 h-1, and the composition of C6 ~ C12 hydrocarbons increased. With increases in the space velocity, higher yields of liquid oil were obtained, but the composition of C6 ~ C12 hydrocarbons was reduced. With 1 wt% Ni/sand, the oil yield obtained was greater than that obtained with 10 wt% Ni/sand. In summary, when 1 wt% Ni/sand was used at a space velocity of 10,000 h-1, the oil yield was 60.99 wt% and the composition of C6 ~ C12 hydrocarbons was highest at 42.06 area%.

본 연구는 '열매체 및 가스 순환형 열분해 시스템'이라는 새로운 시스템 개발을 위해 열분해 실험을 수행하기 전에 공정 모사를 위한 기본 데이터를 얻기 위하여 수행되었다. 기초 열분해 실험에서는 폐플라스틱 대신 폴리프로필렌(PP)을 모델 물질로 선택하였고, '열매체 및 가스 순환형 열분해 시스템'에서 열전달 매체로 활용되는 유동사(이하 sand로 표기)를 사용하였다. Ni은 촉매 열분해를 촉진하기 위해 모래에 활성 촉매로 담지하였다. 열중량분석기(thermogravimetric analyzer, TGA)를 이용하여 PP의 기본 물성을 분석하고, N2 분위기 600 ℃에서 열분해하여 액상 오일을 생산하였다. 촉매 열분해 반응을 통해 생성된 액상 오일은 GC/MS를 이용하여 탄소 수 분포를 분석하였다. 이번 연구에서는 열분해 공간 속도와 촉매량의 변화가 열분해 후 생성되는 액상 오일 수율과 액체 연료의 탄소수 분포에 미치는 영향을 조사하였다. Ni/sand를 이용하면 열분해 오일 수율은 공간속도 30,000 h-1에서 10 wt% Ni/sand 하나의 조건을 제외하고 오일 수율이 증가하였고, C6 ~ C12사이의 탄화수소의 비율은 증가하였다. 공간속도가 증가하면 더 높은 열분해 오일 수율을 얻었으나, C6 ~ C12사이의 탄화수소의 비율은 감소하였다. 1 wt% Ni/sand를 이용한 경우, 10 wt% Ni/sand를 사용할 때 보다 액상 오일 수율은 더 높았다. 결론적으로 공간속도 10,000 h-1에서 1 wt% Ni/sand를 이용하였을 경우 오일 수율은 60.99 wt%이고, 42.06 area%의 가장 높은 C6 ~ C12 탄화수소의 비율이 나타났다.

Keywords

References

  1. Kim, J.-S., Bang, B. Y., Koo, B.-J., and Ryu, T. U., "Thermochemical Conversion System by Recirculation of Heat Carrier and Gases Thereby," KR. Patent No. 10-2711810 (2020).
  2. Sriningsih, W., Saerodji, M. G., Trisunaryanti, W., Triyono, Armunanato, R., and Falah, I. I., "Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co-Mo Metals," Procedia Environ. Sci., 20, 215-224 (2014). https://doi.org/10.1016/j.proenv.2014.03.028
  3. Park, K.-B., Jeong, Y.-S., and Kim, J.-S., "Activator-assisted Pyrolysis of Polypropylene," Appl. Energ., 253, 113558 (2019). https://doi.org/10.1016/j.apenergy.2019.113558
  4. Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., and Aroua, M. K., "A Review on Pyrolysis of Plastic Wastes," Energy Conv. Manag., 115, 308-326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037
  5. Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., and Yoshikawa, K., "Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors," Energy Procedia, 47, 180-188 (2014). https://doi.org/10.1016/j.egypro.2014.01.212
  6. Geyer, R., Jambeck, J. R., and Law, K. L., "Production, Use, and Fate of All Plastics Ever Made," Science Advances, 3(7) e1700782 (2017). https://doi.org/10.1126/sciadv.1700782
  7. Lee, H. S., "Korean Social Trends 2018 - Generation and Recycling of Waste Plastics," Statistical Research Institut, (2018).
  8. Kiran, N., Ekinci, E., and Snape, C. E., "Recyling of Plastic Wastes Via Pyrolysis," Resour. Conserv. Recycl., 29(4), 273-283 (2000). https://doi.org/10.1016/S0921-3449(00)00052-5
  9. Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., and Nizami, A. S., "Effect of Plastic Waste Types on Pyrolysis Liquid Oil," Int. Biodeterior. Biodegrad., 119, 239-252 (2017). https://doi.org/10.1016/j.ibiod.2016.09.017
  10. Piao, G., Aono, S., Kondoh, M., Yamazaki, R., and Mori, S., "Combustion Test of Refuse Derived Fuel in Fluidized Bed," Waste Manage., 20(5-6), 443-447 (2000). https://doi.org/10.1016/S0956-053X(00)00009-X
  11. Miandad, R., Barakat, M. A., Aburiazaiza, A. S., and Rehan, M., Nizami, A. S., "Catalytic Pyrolysis of Plastic Waste: A Review," Process Saf. Environ. Protect., 102, 822-838 (2016). https://doi.org/10.1016/j.psep.2016.06.022
  12. You, Y.-S., Kim, M.-K., Park, M.-J., and Choi, S.-W., "Development of Oxy-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk," Clean Technol., 20(3), 205-211 (2014). https://doi.org/10.7464/ksct.2014.20.3.205
  13. Gug, J., Cacciola, D., and Sobkowicz, M. J., "Processing and Properties of a Solid Energy Fuel From Municipal Solid Waste (MSW) and Recycled Plastics," Waste Manage., 35, 283-292 (2015). https://doi.org/10.1016/j.wasman.2014.09.031
  14. Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A., and Nizami, A.-S., "Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries," Frontiers in Energy Research, 7, 27 (2019). https://doi.org/10.3389/fenrg.2019.00027
  15. Kim, Y.-M., Lee, B., Han, T. U., Kim, S., Yu, T.-U., Bang, B. Y., Kim, J.-S., and Park, Y.-K., "Research on Pyrolysis Properties of Waste Plastic Films," Appl. Chem. Eng., 28(1), 23-28 (2017). https://doi.org/10.14478/ace.2016.1091
  16. Dawood, A., and Miura, K., "Catalytic Pyrolysis of γ-irradiated Polypropylene (PP) over HY-zeolite for Enhancing the Reactivity and the Product Selectivity," Polym. Degrad. Stabil., 76(1), 45-52 (2002). https://doi.org/10.1016/S0141-3910(01)00264-6
  17. Yu, F., Gao, L., Wang, W., Zhang, G., and Ji, J., "Bio-fuel Production from the Catalytic Pyrolysis of Soybean Oil over Me-Al-MCM-41 (Me=La, Ni or Fe) Mesoporous Materials," J. Anal. Appl. Pyrolysis., 104, 325-329 (2013). https://doi.org/10.1016/j.jaap.2013.06.017
  18. Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., and Khare, R. P., "Upgrading Pyrolysis Bio-oil to Hydrocarbon Enriched Biofuel Overbifunctional Fe-Ni/HZSM-5 Catalyst in Supercritical Methanol," Fuel Process. Technol., 167, 117-126 (2017). https://doi.org/10.1016/j.fuproc.2017.06.032
  19. Murata, K., Kreethawate, L., Larpkiattaworn, S., and Inaba, M., "Evaluation of Ni-based Catalysts for the Catalytic Fast Pyrolysis of Jatropha Residues," J. Anal. Appl. Pyrolysis., 118, 308-316 (2016). https://doi.org/10.1016/j.jaap.2016.02.014
  20. Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D. G., and Pitsch, H., "Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels," SAE Tech. Pap. Ser., 195-216, (2007).
  21. Wang, L., Li, D., Koike, M., Watanabe, H., Xu, Y., Nakagawa, Y., and Tomishige, K., "Catalytic Performance and Charaterization of Ni-Co Catalysts for the Steam Reforming of Biomass Tar to Synthesis Gas," Fuel, 112, 654-661 (2013). https://doi.org/10.1016/j.fuel.2012.01.073
  22. Park, J. Y., and DOE, J.-W., "Utilization and Quality Standard of Fast Pyrolysis Bio-Oil," Trans. Korean Hydrogen New Energy Soc., 31(2), 223-233 (2020). https://doi.org/10.7316/KHNES.2020.31.2.223
  23. Kawamoto, H., Murayama, M., and Saka, S., "Pyrolysis Behavior of Levoglucosan as an Intermediate in Cellulose Pyrolysis : Polymerization into Polysaccharide as a Key Reaction to Carbonizedproduct Formation," J. Wood Sci., 49, 469-473 (2003). https://doi.org/10.1007/s10086-002-0487-5