DOI QR코드

DOI QR Code

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2021.06.11
  • Accepted : 2021.07.06
  • Published : 2021.09.30

Abstract

Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2019R1I1A3A01058865) and (NRF-2019H1D8A210599).

References

  1. Liu, H., Du, Y., Deng, Y., and Ye, P. D., "Semiconducting Black Phosphorus: Synthesis, Transport Properties and Electronic Applications," Chem. Soc. Rev., 44(9), 2732-2743 (2015). https://doi.org/10.1039/C4CS00257A
  2. Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., and Ye, P. D., "Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility," ACS Nano, 8(4), 4033-4041 (2014). https://doi.org/10.1021/nn501226z
  3. Kou, L., Chen, C., and Smith, S. C., "Phosphorene: Fabrication, Properties, and Applications," J. Phys. Chem. Lett., 6(14), 2794-2805 (2015). https://doi.org/10.1021/acs.jpclett.5b01094
  4. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J. O., Narasimha-Acharya, K. L., Blanter, S. I., Groenendijk, D. J., Buscema, M., Steele, G. A., and Alvarez, J. V., "Isolation and Characterization of Few-Layer Black Phosphorus," 2D Mater., 1(2), 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001
  5. Xu, J.-Y., Gao, L.-F., Hu, C.-X., Zhu, Z.-Y., Zhao, M., Wang, Q., and Zhang, H.-L., "Preparation of Large Size, Few-Layer Black Phosphorus Nanosheets Via Phytic Acid-Assisted Liquid Exfoliation," Chem. Commun., 52(52), 8107-8110 (2016). https://doi.org/10.1039/c6cc03206k
  6. Brent, J. R., Savjani, N., Lewis, E. A., Haigh, S. J., Lewis, D. J., and O'Brien, P., "Production of Few-Layer Phosphorene by Liquid Exfoliation of Black Phosphorus," Chem. Commun., 50(87), 13338-13341 (2014). https://doi.org/10.1039/c4cc05752j
  7. Li, X., Deng, B., Wang, X., Chen, S., Vaisman, M., Karato, S.-I., Pan, G., Lee, M. L., Cha, J., Wang, H., and Xia, F., "Synthesis of Thin-Film Black Phosphorus on a Flexible Substrate," 2D Mater., 2(3), 031002 (2015). https://doi.org/10.1088/2053-1583/2/3/031002
  8. Eda, G., Fanchini, G., and Chhowalla, M., "Large-area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nat. Nanotechnol, 3(5), 270-274 (2008). https://doi.org/10.1038/nnano.2008.83
  9. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., and Rinzler A. G., "Transparent, Conductive Carbon Nanotube Films," Science, 305(5688), 1273-1276 (2004). https://doi.org/10.1126/science.1101243
  10. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., Nguyen, S. T., and Ruoff, R. S., "Preparation and Characterization of Graphene Oxide Paper," Nature, 448(7152), 457-460 (2007). https://doi.org/10.1038/nature06016
  11. Favron, A., Gaufres, E., Fossard, F., Phaneuf-L'Heureux, A.-L., Tang, N. Y., Levesque, P. L., Loiseau, A., Leonelli, R., Francoeur, S., and Martel, R., "Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus," Nat. Mater., 14(8), 826-832 (2015). https://doi.org/10.1038/nmat4299
  12. Wang, G., Slough, W. J., Pandey, R., and Karna, S. P., "Degradation of Phosphorene in Air: Understanding at Atomic Level," 2D Mater., 3(2), 025011 (2016). https://doi.org/10.1088/2053-1583/3/2/025011
  13. Wang, H., Yang, X., Shao, W., Chen, S., Xie, J., Zhang, X., Wang, J., and Xie, Y., "Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation," J. Am. Chem. Soc., 137(35), 11376-11382 (2015). https://doi.org/10.1021/jacs.5b06025
  14. Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., Sun, Z., Xie, H., Wang, H., Yu, X.-F., and Chu, P. K., "From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics," Adv. Funct. Mater., 25(45), 6996-7002 (2015). https://doi.org/10.1002/adfm.201502902
  15. Deng, Y., Luo, Z., Conrad, N. J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P. M., Lou, J., Xu, X., and Ye, P. D., "Black Phosphorus-Monolayer MoS2 Van Der Waals Heterojunction p-n Diode," ACS Nano, 8(8), 8292-8299 (2014). https://doi.org/10.1021/nn5027388
  16. Chen, L., Zhou, G., Liu, Z., Ma, X., Chen, J., Zhang, Z., Ma, X., Li, F., Cheng, H.-M., and Ren, W., "Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery," Adv. Mater., 28(3), 510-517 (2016). https://doi.org/10.1002/adma.201503678
  17. Kang, J., Wood, J. D., Wells, S. A., Lee, J. H., Liu, X., Chen, K. S., and Hersam, M. C., "Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus," ACS Nano, 9(4), 3596-3604 (2015). https://doi.org/10.1021/acsnano.5b01143
  18. Hanlon, D., Backes, C., Doherty, E., Cucinotta, C. S., Berner, N. C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q. M., McEvoy, N., Blau, W. J., Wang, J., Abellan, G., Hauke, F., Hirsch, A., Sanvito, S., O'Regan, D. D., Duesberg, G. S., Nicolosi, V., and Coleman, J. N., "Liquid Exfoliation of Solvent-Stabilized Few-Layer Black Phosphorus for Applications Beyond Electronics," Nat. Commun., 6(1), 8563 (2015). https://doi.org/10.1038/ncomms9563
  19. Liu, Y., Qiu, Z., Carvalho, A., Bao, Y., Xu, H., Tan, S. J. R., Liu, W., Neto, A. H. C., Loh, K. P., and Lu, J., "Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus," Nano Lett., 17(3), 1970-1977 (2017). https://doi.org/10.1021/acs.nanolett.6b05381
  20. Rahman, M. Z., Kwong, C. W., Davey, K., Qiao, S. Z., "2D Phosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications," Energ. Environ. Sci., 9(3), 709-728 (2016). https://doi.org/10.1039/c5ee03732h
  21. Zhao, G., Wang, T., Shao, Y., Wu, Y., Huang, B., and Hao, X., "A Novel Mild Phase-Transition to Prepare Black Phosphorus Nanosheets with Excellent Energy Applications," Small, 13(7), 1602243 (2017). https://doi.org/10.1002/smll.201602243
  22. Wang, L., Xu, Q., Xu, J., and Weng, J., "Synthesis of Hybrid Nanocomposites of ZIF-8 with Two-Dimensional Black Phosphorus for Photocatalysis," Rsc Adv., 6(73), 69033-69039 (2016). https://doi.org/10.1039/C6RA13646J
  23. Lei, W., Zhang, T., Liu, P., Rodriguez, J. A., Liu, G., and Liu, M., "Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids," ACS Catal., 6(12), 8009-8020 (2016). https://doi.org/10.1021/acscatal.6b02520
  24. Zhou, Q., Chen, Q., Tong, Y., and Wang, J., "Light-induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection," Angew. Chem. Int. Ed., 55(38), 11437-11441 (2016). https://doi.org/10.1002/anie.201605168