DOI QR코드

DOI QR Code

A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging

  • Beomsue Kim (Neural Circuit Research Group, Korea Brain Research Institute (KBRI)) ;
  • Hongmin Kim (Neural Circuit Research Group, Korea Brain Research Institute (KBRI)) ;
  • Songhui Kim (Neural Circuit Research Group, Korea Brain Research Institute (KBRI)) ;
  • Young-ran Hwang (Neural Circuit Research Group, Korea Brain Research Institute (KBRI))
  • Received : 2021.03.02
  • Accepted : 2021.06.07
  • Published : 2021.12.31

Abstract

Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.

Keywords

Acknowledgement

We would like to thank Dr. Yeri Han from DGMIF (Daegu, Korea) for helpful comments.

References

  1. M.M. Alam, J. Lee, S.Y. Lee, Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl. Med. Mol. Imaging 51, 283-296 (2017) 
  2. N. Alifu, A. Zebibula, J. Qi, et al., Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy. ACS Nano 12, 11282-11293 (2018). https://doi.org/10.1021/acsnano.8b05937 
  3. G. Angelovski, E. Toth, Strategies for sensing neurotransmitters with responsive MRI contrast agents. Chem. Soc. Rev. 46, 324-336 (2017). https://doi.org/10.1039/c6cs00154h 
  4. A. Boonrod, A. Hagiwara, M. Hori, et al., Reduced visualization of cerebral infarction on diffusion-weighted images with short diffusion times. Neuroradiology 60, 979-982 (2018). https://doi.org/10.1007/s00234-018-2065-6 
  5. E.M. Brustad, V.S. Lelyveld, C.D. Snow, et al., Structure-guided directed evolution of highly selective P450-based magnetic resonance imaging sensors for dopamine and serotonin. J. Mol. Biol. 422, 245-262 (2012). https://doi.org/10.1016/j.jmb.2012.05.029 
  6. Z. Cai, L. Zhu, M. Wang, et al., NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics 10, 4265-4276 (2020). https://doi.org/10.7150/thno.43533 
  7. J. Cao, B. Zhu, K. Zheng, et al., Recent progress in NIR-II contrast agent for biological imaging. Front. Bioeng. Biotechnol. 7, 1-21 (2020). https://doi.org/10.3389/fbioe.2019.00487 
  8. A. Chen, L. Lu, X. Pu, et al., CT-based radiomics model for predicting brain metastasis in category T1 lung adenocarcinoma. AJR Am. J. Roentgenol. 213(1), 134-139 (2019). https://doi.org/10.2214/AJR.18.20591 
  9. J.J. Chen, Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 187, 209-225 (2019). https://doi.org/10.1016/j.neuroimage.2018.05.050 
  10. G. Chetelat, J. Arbizu, H. Barthel, et al., Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurol. 19, 951-962 (2020). https://doi.org/10.1016/S1474-4422(20)30314-8 
  11. A.M. Chiarelli, D. Perpetuini, P. Croce, et al., Fiberless, multi-channel fNIRS-EEG system based on silicon photomultipliers: Towards sensitive and ecological mapping of brain activity and neurovascular coupling. Sensors (Switzerland) 20, 2831 (2020). https://doi.org/10.3390/s20102831 
  12. E.M. Crowe, W. Alderson, J. Rossiter, et al., Expertise affects inter-observer agreement at peripheral locations within a brain tumor. Front. Psychol. 8, 1628 (2017). https://doi.org/10.3389/fpsyg.2017.01628 
  13. B. Ding, P. Zheng, P. Ma, J. Lin, Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv. Mater. 32, 1-35 (2020). https://doi.org/10.1002/adma.201905823 
  14. I. Dregely, D. Prezzi, C. Kelly-Morland, et al., Imaging biomarkers in oncology: basics and application to MRI. J. Magn. Reson. Imaging 48, 13-26 (2018). https://doi.org/10.1002/jmri.26058 
  15. Y. Du, Z. Fu, J. Sui, et al., NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage Clin. (2020). https://doi.org/10.1016/j.nicl.2020.102375 
  16. J.S. Duncan, G.P. Winston, M.J. Koepp, S. Ourselin, Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 15, 420-433 (2016). https://doi.org/10.1016/S1474-4422(15)00383-X 
  17. A. Duro-Castano, D. Moreira Leite, J. Forth, et al., Designing peptide nanoparticles for efficient brain delivery. Adv. Drug Deliv. Rev. 160, 52-77 (2020). https://doi.org/10.1016/j.addr.2020.10.001 
  18. T. Eslami, V. Mirjalili, A. Fong, et al., ASD-DiagNet: A hybrid learning approach for detection of autism Spectrum disorder using fMRI data. Front. Neuroinform. 13, 70 (2019). https://doi.org/10.3389/fninf.2019.00070 
  19. M. Filippi, S. Elisabetta, N. Piramide, F. Agosta, Functional MRI in idiopathic Parkinson's disease. Int. Rev. Neurobiol. 141, 439-467 (2018) 
  20. D.C. Ghinda, J.S. Wu, N.W. Duncan, G. Northoff, How much is enough-Can resting state fMRI provide a demarcation for neurosurgical resection in glioma? Neurosci. Biobehav. Rev. 84, 245-261 (2018). https://doi.org/10.1016/j.neubiorev.2017.11.019 
  21. Y. Gui, J.D. Marks, S. Das, et al., Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol. 30, 151-164 (2020). https://doi.org/10.1111/bpa.12763
  22. T. Hatakeyama, Y. Kunii, I. Miura, et al., Dynamic changes in near-infrared spectroscopy (NIRS) findings in first-episode schizophrenia: A case report. Fukushima J. Med. Sci. 63, 28-31 (2017). https://doi.org/10.5387/fms.2016-22 
  23. F. Heath, S.A. Hurley, H. Johansen-Berg, C. Sampaio-Baptista, Advances in noninvasive myelin imaging. Dev. Neurobiol. 78(2), 136-151 (2018) 
  24. C.S.H. Ho, L.J.H. Lim, A.Q. Lim, et al., Diagnostic and predictive applications of functional near-infrared spectroscopy for major depressive disorder: A systematic review. Front. Psychiatry 11, 378 (2020). https://doi.org/10.3389/fpsyt.2020.00378 
  25. G. Hong, S. Diao, J. Chang, et al., Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723-730 (2014). https://doi.org/10.1038/nphoton.2014.166 
  26. V. Hsieh, S. Okada, H. Wei, et al., Neurotransmitter-responsive nanosensors for T2-weighted magnetic resonance imaging. J. Am. Chem. Soc. 141, 15751-15754 (2019). https://doi.org/10.1021/jacs.9b08744 
  27. H. Huang, J.F. Lovell, Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 27(2), 1603524 (2017). https://doi.org/10.1002/adfm.201603524 
  28. M. Inglese, M. Petracca, Imaging multiple sclerosis and other neurodegenerative diseases. Prion 7, 47-54 (2013). https://doi.org/10.4161/pri.22650 
  29. N.Y. Kang, J.Y. Lee, S.H. Lee, et al., Multimodal imaging probe development for pancreatic β cells: From fluorescence to pet. J. Am. Chem. Soc. 142, 3430-3439 (2020). https://doi.org/10.1021/jacs.9b11173 
  30. N.Y. Kang, S.J. Park, X. Wei Emmiline Ang, et al., A macrophage uptaking near-infrared chemical probe CDnir7 for in vivo imaging of inflammation. Chem. Commun. 50, 6589-6591 (2014). https://doi.org/10.1039/c4cc02038c 
  31. S. Kazemifar, K.Y. Manning, N. Rajakumar, et al., Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease. PLoS One 12(6), e0178529 (2017). https://doi.org/10.1371/journal.pone.0178529 
  32. B. Kim, M. Fukuda, J.-Y. Lee, et al., Visualizing microglia with a fluorescence turnon Ugt1a7c substrate. Angew. Chem. Int. Ed. Engl. 58, 7972-7976 (2019a). https://doi.org/10.1002/anie.201903058 
  33. D. Kim, G.M. Son, M.S. Kwon, et al., Educational benefits of intraoperative Indocyanine green angiography for surgical beginners during laparoscopic colorectal surgery. J. Minim. Invasive Surg. 21, 25-30 (2018). https://doi.org/10.7602/jmis.2018.21.1.25 
  34. J.-J. Kim, Y.-A. Lee, D. Su, et al., A near-infrared probe tracks and treats lung tumor initiating cells by targeting HMOX2. J. Am. Chem. Soc. 141, 14673-14686 (2019b). https://doi.org/10.1021/jacs.9b06068 
  35. H.C. Kniep, F. Madesta, T. Schneider, et al., Radiomics of brain MRI: Utility in prediction of metastatic tumor type. Radiology 290(3), 479-487 (2019). https://doi.org/10.1148/radiol.2018180946 
  36. S. Koike, Y. Nishimura, R. Takizawa, et al., Near-infrared spectroscopy in schizophrenia: A possible biomarker for predicting clinical outcome and treatment response. Front. Psychiatry 4, 12-17 (2013). https://doi.org/10.3389/fpsyt.2013.00145 
  37. W.C. Kreisl, C.H. Lyoo, M. McGwier, et al., In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. Brain 136, 2228-2238 (2013). https://doi.org/10.1093/brain/awt145 
  38. Y. Lee, Y. Park, H. Nam, et al., Translocator protein (TSPO): The new story of the old protein in neuroinflammation. BMB Rep. 53, 20-27 (2020). https://doi.org/10.5483/bmbrep.2020.53.1.273 
  39. Y.A. Lee, J.J. Kim, J. Lee, et al., Identification of tumor initiating cells with a small-molecule fluorescent probe by using vimentin as a biomarker. Angew. Chemie. Int. Ed. 57, 2851-2854 (2018). https://doi.org/10.1002/anie.201712920 
  40. B. Li, M. Zhao, F. Zhang, Rational design of near-infrared-II organic molecular dyes for bioimaging and biosensing. ACS Mater. Lett. 2, 905-917 (2020). https://doi.org/10.1021/acsmaterialslett.0c00157 
  41. N. Li, A. Jasanoff, Local and global consequences of reward-evoked striatal dopamine release. Nature 580, 239-244 (2020). https://doi.org/10.1038/s41586-020-2158-3 
  42. R. Li, G. Rui, W. Chen, et al., Early detection of Alzheimer's disease using noninvasive near-infrared spectroscopy. Front. Aging Neurosci. 10, 1-11 (2018). https://doi.org/10.3389/fnagi.2018.00366 
  43. Z. Li, P.W. Yi, Q. Sun, et al., Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv. Funct. Mater. 22, 2387-2393 (2012). https://doi.org/10.1002/adfm.201103123 
  44. J. Lin, X. Zeng, Y. Xiao, et al., Novel near-infrared II aggregation-induced emission dots for: In vivo bioimaging. Chem. Sci. 10, 1219-1226 (2019). https://doi.org/10.1039/c8sc04363a 
  45. S. Liu, C. Chen, Y. Li, et al., Constitutional isomerization enables bright NIR-II AIEgen for brain-inflammation imaging. Adv. Funct. Mater. 30, 1-10 (2020). https://doi.org/10.1002/adfm.201908125 
  46. S. Luo, C. Ma, M.Q. Zhu, et al., Application of Iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer's disease. Front. Cell. Neurosci. 14, 1-11 (2020). https://doi.org/10.3389/fncel.2020.00021 
  47. S. Luo, E. Zhang, Y. Su, et al., A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127-7138 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.024 
  48. H. Ma, C. Liu, Z. Hu, et al., Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.9b05159 
  49. P.T. Meyer, L. Frings, G. Rucker, S. Hellwig, 18F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J. Nucl. Med. 58, 1888-1898 (2017). https://doi.org/10.2967/jnumed.116.186403 
  50. R. Miao, L.Y. Xia, H.H. Chen, et al., Improved classification of blood-brain-barrier drugs using deep learning. Sci. Rep. 9, 1-11 (2019). https://doi.org/10.1038/s41598-019-44773-4 
  51. M. Neema, J. Stankiewicz, A. Arora, et al., MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 4, 602-617 (2007). https://doi.org/10.1016/j.nurt.2007.08.001 
  52. Q. Ni, S. Mehta, J. Zhang, Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J. 285, 203-219 (2018). https://doi.org/10.1111/febs.14134 
  53. S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 87, 9868-9872 (1990). https://doi.org/10.1073/pnas.87.24.9868 
  54. D. Packer, The history of the antibody as a tool. Acta Histochem. 123(4), 151710 (2021). https://doi.org/10.1016/j.acthis.2021.151710 Online ahead of print 
  55. M. Pannell, V. Economopoulos, T.C. Wilson, et al., Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia 68, 280-297 (2020). https://doi.org/10.1002/glia.23716 
  56. H. Parfenova, C. Leffler, Cerebroprotective functions of HO-2. Curr. Pharm. Des. 14, 443-453 (2008). https://doi.org/10.2174/138161208783597380 
  57. S.J. Park, C.J.H. Ho, S. Arai, et al., Visualizing Alzheimer's disease mouse brain with multispectral optoacoustic tomography using a fluorescent probe, CDnir7. Sci. Rep. 9, 5-12 (2019a). https://doi.org/10.1038/s41598-019-48329-4 
  58. S.J. Park, B. Kim, S. Choi, et al., Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat. Commun. 10(1), 1111 (2019b). https://doi.org/10.1038/s41467-019-08990-9 
  59. M. Perrone, B.S. Moon, H.S. Park, et al., A novel PET imaging probe for the detection and monitoring of translocator protein 18 kDa expression in pathological disorders. Sci. Rep. 6, 20422 (2016). https://doi.org/10.1038/srep20422 
  60. M.G. Preti, N. Makris, G. Papadimitriou, et al., A novel approach of groupwise fMRI-guided tractography allowing to characterize the clinical evolution of Alzheimer's disease. PLoS One 9(3), e92026 (2014). https://doi.org/10.1371/journal.pone.0092026 
  61. C. Qu, Y. Xiao, H. Zhou, et al., Quaternary ammonium salt based NIR-II probes for in vivo imaging. Adv. Opt. Mater. (2019). https://doi.org/10.1002/adom.201900229 
  62. N. Quartuccio, R. Laudicella, A. Vento, et al., The additional value of 18F-FDG PET and MRI in patients with glioma: a review of the literature from 2015 to 2020. Diagnostics 10, 357 (2020). https://doi.org/10.3390/diagnostics10060357 
  63. N. Schleich, F. Danhier, V. Preat, Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J. Control. Release 198, 35-54 (2015) 
  64. M.I. Sereno, A.M. Dale, J.B. Reppas, et al., Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889-893 (1995). https://doi.org/10.1126/science.7754376 
  65. M.G. Shapiro, G.G. Westmeyer, P.A. Romero, et al., Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat. Biotechnol. 28, 264-270 (2010). https://doi.org/10.1038/nbt.1609 
  66. J. Sharkey, P.J. Starkey Lewis, M. Barrow, et al., Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance-based detection in vivo. Cytotherapy 19, 555-569 (2017). https://doi.org/10.1016/j.jcyt.2017.01.003 
  67. T. Shimokawa, T. Ishii, Y. Takahashi, et al., Development of multi-directional functional near-infrared spectroscopy system for human neuroimaging studies. Biomed. Opt. Express 10, 1393 (2019). https://doi.org/10.1364/boe.10.001393 
  68. J. Shin, J. Kwon, J. Choi, C.H. Im, Performance enhancement of a brain-computer interface using high-density multi-distance NIRS. Sci. Rep. 7, 1-10 (2017). https://doi.org/10.1038/s41598-017-16639-0 
  69. P. Sirpal, A. Kassab, P. Pouliot, D.K. Nguyen, fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 24, 1 (2019). https://doi.org/10.1117/1.jbo.24.5.051408 
  70. J. Steinbrink, A. Villringer, F. Kempf, et al., Illuminating the BOLD signal: Combined fMRI-fNIRS studies. Magn. Reson. Imaging 24, 495-505 (2006). https://doi.org/10.1016/j.mri.2005.12.034 
  71. S. Stuart, R. Vitorio, R. Morris, et al., Cortical activity during walking and balance tasks in older adults and Parkinson's disease: a structured review. Maturitas 113, 53-72 (2019). https://doi.org/10.1016/j.maturitas.2018.04.011.Cortical 
  72. Y. Sun, M. Ding, X. Zeng, et al., Novel bright-emission small-molecule NIR-II fluorophores for: In vivo tumor imaging and image-guided surgery. Chem. Sci. 8, 3489-3493 (2017). https://doi.org/10.1039/c7sc00251c 
  73. Z. Tao, G. Hong, C. Shinji, et al., Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chemie. Int. Ed. 52, 13002-13006 (2013). https://doi.org/10.1002/anie.201307346 
  74. R.T. Thibault, A. MacPherson, M. Lifshitz, et al., Neurofeedback with fMRI: A critical systematic review. Neuroimage 172, 786-807 (2018). https://doi.org/10.1016/j.neuroimage.2017.12.071 
  75. J. Tian, J. Wang, W. Quan, et al., The functional near-infrared spectroscopy in the diagnosis of schizophrenia. Eur. J. Psychiatry 33, 97-103 (2019). https://doi.org/10.1016/j.ejpsy.2019.05.001 
  76. R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998) 
  77. J. Wahsner, E.M. Gale, A. Rodriguez-Rodriguez, P. Caravan, Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 119, 957-1057 (2019) 
  78. H. Wan, J. Yue, S. Zhu, et al., A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018). https://doi.org/10.1038/s41467-018-03505-4 
  79. S. Wang, Y. Fan, D. Li, et al., Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-09043-x 
  80. J.A. Witjes, J. Douglass, The role of hexaminolevulinate fluorescence cystoscopy in bladder cancer. Nat. Clin. Pract. Urol. 4, 542-549 (2007) 
  81. W. Wu, Y. Yang, Y. Yang, et al., Molecular engineering of an organic NIR-II fluorophore with aggregation-induced emission characteristics for in vivo imaging. Small 15, 1-10 (2019). https://doi.org/10.1002/smll.201805549 
  82. Y.D. Xiao, R. Paudel, J. Liu, et al., MRI contrast agents: Classification and application (review). Int. J. Mol. Med. 38, 1319-1326 (2016). https://doi.org/10.3892/ijmm.2016.2744 
  83. P. Xu, F. Kang, W. Yang, et al., Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for: In vivo imaging. Nanoscale. (2020). https://doi.org/10.1039/c9nr09999a 
  84. J. Yang, Y. Zaim Wadghiri, D. Minh Hoang, et al., Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging. Neuroimage 55, 1600-1609 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.023 
  85. M. Yang, Z. Yang, T. Yuan, et al., A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front. Neurol. 10, 1-14 (2019). https://doi.org/10.3389/fneur.2019.00058 
  86. S.W. Yun, N.Y. Kang, S.J. Park, et al., Diversity oriented fluorescence library approach (DOFLA) for live cell imaging probe development. Acc. Chem. Res. 47, 1277-1286 (2014). https://doi.org/10.1021/ar400285f 
  87. S.-W. Yun, C. Leong, D. Zhai, et al., Neural stem cell specific fluorescent chemical probe binding to FABP7. Proc. Natl. Acad. Sci. U. S. A. 109, 10214-10217 (2012). https://doi.org/10.1073/pnas.1200817109 
  88. L. Zhang, C. Liu, S. Zhou, et al., Improving quantum yield of a NIR-II dye by Phenylazo group. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.201901470 
  89. X.D. Zhang, H. Wang, A.L. Antaris, et al., Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872-6879 (2016). https://doi.org/10.1002/adma.201600706 
  90. J. Zhao, J. Chen, S. Ma, et al., Recent developments in multimodality fluorescence imaging probes. Acta Pharm. Sin. B 8, 320-338 (2018). https://doi.org/10.1016/j.apsb.2018.03.010 
  91. M. Zhao, B. Li, H. Zhang, F. Zhang, Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem. Sci. (2021). https://doi.org/10.1039/d0sc04789a 
  92. Y. Zhong, Z. Ma, S. Zhu, et al., Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 1-7 (2017). https://doi.org/10.1038/s41467-017-00917-6 
  93. Z. Zhou, L. Yang, J. Gao, X. Chen, Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 31, 1-32 (2019). https://doi.org/10.1002/adma.201804567