Acknowledgement
We would like to thank Dr. Yeri Han from DGMIF (Daegu, Korea) for helpful comments.
References
- M.M. Alam, J. Lee, S.Y. Lee, Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl. Med. Mol. Imaging 51, 283-296 (2017)
- N. Alifu, A. Zebibula, J. Qi, et al., Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy. ACS Nano 12, 11282-11293 (2018). https://doi.org/10.1021/acsnano.8b05937
- G. Angelovski, E. Toth, Strategies for sensing neurotransmitters with responsive MRI contrast agents. Chem. Soc. Rev. 46, 324-336 (2017). https://doi.org/10.1039/c6cs00154h
- A. Boonrod, A. Hagiwara, M. Hori, et al., Reduced visualization of cerebral infarction on diffusion-weighted images with short diffusion times. Neuroradiology 60, 979-982 (2018). https://doi.org/10.1007/s00234-018-2065-6
- E.M. Brustad, V.S. Lelyveld, C.D. Snow, et al., Structure-guided directed evolution of highly selective P450-based magnetic resonance imaging sensors for dopamine and serotonin. J. Mol. Biol. 422, 245-262 (2012). https://doi.org/10.1016/j.jmb.2012.05.029
- Z. Cai, L. Zhu, M. Wang, et al., NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics 10, 4265-4276 (2020). https://doi.org/10.7150/thno.43533
- J. Cao, B. Zhu, K. Zheng, et al., Recent progress in NIR-II contrast agent for biological imaging. Front. Bioeng. Biotechnol. 7, 1-21 (2020). https://doi.org/10.3389/fbioe.2019.00487
- A. Chen, L. Lu, X. Pu, et al., CT-based radiomics model for predicting brain metastasis in category T1 lung adenocarcinoma. AJR Am. J. Roentgenol. 213(1), 134-139 (2019). https://doi.org/10.2214/AJR.18.20591
- J.J. Chen, Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 187, 209-225 (2019). https://doi.org/10.1016/j.neuroimage.2018.05.050
- G. Chetelat, J. Arbizu, H. Barthel, et al., Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurol. 19, 951-962 (2020). https://doi.org/10.1016/S1474-4422(20)30314-8
- A.M. Chiarelli, D. Perpetuini, P. Croce, et al., Fiberless, multi-channel fNIRS-EEG system based on silicon photomultipliers: Towards sensitive and ecological mapping of brain activity and neurovascular coupling. Sensors (Switzerland) 20, 2831 (2020). https://doi.org/10.3390/s20102831
- E.M. Crowe, W. Alderson, J. Rossiter, et al., Expertise affects inter-observer agreement at peripheral locations within a brain tumor. Front. Psychol. 8, 1628 (2017). https://doi.org/10.3389/fpsyg.2017.01628
- B. Ding, P. Zheng, P. Ma, J. Lin, Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv. Mater. 32, 1-35 (2020). https://doi.org/10.1002/adma.201905823
- I. Dregely, D. Prezzi, C. Kelly-Morland, et al., Imaging biomarkers in oncology: basics and application to MRI. J. Magn. Reson. Imaging 48, 13-26 (2018). https://doi.org/10.1002/jmri.26058
- Y. Du, Z. Fu, J. Sui, et al., NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage Clin. (2020). https://doi.org/10.1016/j.nicl.2020.102375
- J.S. Duncan, G.P. Winston, M.J. Koepp, S. Ourselin, Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 15, 420-433 (2016). https://doi.org/10.1016/S1474-4422(15)00383-X
- A. Duro-Castano, D. Moreira Leite, J. Forth, et al., Designing peptide nanoparticles for efficient brain delivery. Adv. Drug Deliv. Rev. 160, 52-77 (2020). https://doi.org/10.1016/j.addr.2020.10.001
- T. Eslami, V. Mirjalili, A. Fong, et al., ASD-DiagNet: A hybrid learning approach for detection of autism Spectrum disorder using fMRI data. Front. Neuroinform. 13, 70 (2019). https://doi.org/10.3389/fninf.2019.00070
- M. Filippi, S. Elisabetta, N. Piramide, F. Agosta, Functional MRI in idiopathic Parkinson's disease. Int. Rev. Neurobiol. 141, 439-467 (2018)
- D.C. Ghinda, J.S. Wu, N.W. Duncan, G. Northoff, How much is enough-Can resting state fMRI provide a demarcation for neurosurgical resection in glioma? Neurosci. Biobehav. Rev. 84, 245-261 (2018). https://doi.org/10.1016/j.neubiorev.2017.11.019
- Y. Gui, J.D. Marks, S. Das, et al., Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol. 30, 151-164 (2020). https://doi.org/10.1111/bpa.12763
- T. Hatakeyama, Y. Kunii, I. Miura, et al., Dynamic changes in near-infrared spectroscopy (NIRS) findings in first-episode schizophrenia: A case report. Fukushima J. Med. Sci. 63, 28-31 (2017). https://doi.org/10.5387/fms.2016-22
- F. Heath, S.A. Hurley, H. Johansen-Berg, C. Sampaio-Baptista, Advances in noninvasive myelin imaging. Dev. Neurobiol. 78(2), 136-151 (2018)
- C.S.H. Ho, L.J.H. Lim, A.Q. Lim, et al., Diagnostic and predictive applications of functional near-infrared spectroscopy for major depressive disorder: A systematic review. Front. Psychiatry 11, 378 (2020). https://doi.org/10.3389/fpsyt.2020.00378
- G. Hong, S. Diao, J. Chang, et al., Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723-730 (2014). https://doi.org/10.1038/nphoton.2014.166
- V. Hsieh, S. Okada, H. Wei, et al., Neurotransmitter-responsive nanosensors for T2-weighted magnetic resonance imaging. J. Am. Chem. Soc. 141, 15751-15754 (2019). https://doi.org/10.1021/jacs.9b08744
- H. Huang, J.F. Lovell, Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 27(2), 1603524 (2017). https://doi.org/10.1002/adfm.201603524
- M. Inglese, M. Petracca, Imaging multiple sclerosis and other neurodegenerative diseases. Prion 7, 47-54 (2013). https://doi.org/10.4161/pri.22650
- N.Y. Kang, J.Y. Lee, S.H. Lee, et al., Multimodal imaging probe development for pancreatic β cells: From fluorescence to pet. J. Am. Chem. Soc. 142, 3430-3439 (2020). https://doi.org/10.1021/jacs.9b11173
- N.Y. Kang, S.J. Park, X. Wei Emmiline Ang, et al., A macrophage uptaking near-infrared chemical probe CDnir7 for in vivo imaging of inflammation. Chem. Commun. 50, 6589-6591 (2014). https://doi.org/10.1039/c4cc02038c
- S. Kazemifar, K.Y. Manning, N. Rajakumar, et al., Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease. PLoS One 12(6), e0178529 (2017). https://doi.org/10.1371/journal.pone.0178529
- B. Kim, M. Fukuda, J.-Y. Lee, et al., Visualizing microglia with a fluorescence turnon Ugt1a7c substrate. Angew. Chem. Int. Ed. Engl. 58, 7972-7976 (2019a). https://doi.org/10.1002/anie.201903058
- D. Kim, G.M. Son, M.S. Kwon, et al., Educational benefits of intraoperative Indocyanine green angiography for surgical beginners during laparoscopic colorectal surgery. J. Minim. Invasive Surg. 21, 25-30 (2018). https://doi.org/10.7602/jmis.2018.21.1.25
- J.-J. Kim, Y.-A. Lee, D. Su, et al., A near-infrared probe tracks and treats lung tumor initiating cells by targeting HMOX2. J. Am. Chem. Soc. 141, 14673-14686 (2019b). https://doi.org/10.1021/jacs.9b06068
- H.C. Kniep, F. Madesta, T. Schneider, et al., Radiomics of brain MRI: Utility in prediction of metastatic tumor type. Radiology 290(3), 479-487 (2019). https://doi.org/10.1148/radiol.2018180946
- S. Koike, Y. Nishimura, R. Takizawa, et al., Near-infrared spectroscopy in schizophrenia: A possible biomarker for predicting clinical outcome and treatment response. Front. Psychiatry 4, 12-17 (2013). https://doi.org/10.3389/fpsyt.2013.00145
- W.C. Kreisl, C.H. Lyoo, M. McGwier, et al., In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. Brain 136, 2228-2238 (2013). https://doi.org/10.1093/brain/awt145
- Y. Lee, Y. Park, H. Nam, et al., Translocator protein (TSPO): The new story of the old protein in neuroinflammation. BMB Rep. 53, 20-27 (2020). https://doi.org/10.5483/bmbrep.2020.53.1.273
- Y.A. Lee, J.J. Kim, J. Lee, et al., Identification of tumor initiating cells with a small-molecule fluorescent probe by using vimentin as a biomarker. Angew. Chemie. Int. Ed. 57, 2851-2854 (2018). https://doi.org/10.1002/anie.201712920
- B. Li, M. Zhao, F. Zhang, Rational design of near-infrared-II organic molecular dyes for bioimaging and biosensing. ACS Mater. Lett. 2, 905-917 (2020). https://doi.org/10.1021/acsmaterialslett.0c00157
- N. Li, A. Jasanoff, Local and global consequences of reward-evoked striatal dopamine release. Nature 580, 239-244 (2020). https://doi.org/10.1038/s41586-020-2158-3
- R. Li, G. Rui, W. Chen, et al., Early detection of Alzheimer's disease using noninvasive near-infrared spectroscopy. Front. Aging Neurosci. 10, 1-11 (2018). https://doi.org/10.3389/fnagi.2018.00366
- Z. Li, P.W. Yi, Q. Sun, et al., Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv. Funct. Mater. 22, 2387-2393 (2012). https://doi.org/10.1002/adfm.201103123
- J. Lin, X. Zeng, Y. Xiao, et al., Novel near-infrared II aggregation-induced emission dots for: In vivo bioimaging. Chem. Sci. 10, 1219-1226 (2019). https://doi.org/10.1039/c8sc04363a
- S. Liu, C. Chen, Y. Li, et al., Constitutional isomerization enables bright NIR-II AIEgen for brain-inflammation imaging. Adv. Funct. Mater. 30, 1-10 (2020). https://doi.org/10.1002/adfm.201908125
- S. Luo, C. Ma, M.Q. Zhu, et al., Application of Iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer's disease. Front. Cell. Neurosci. 14, 1-11 (2020). https://doi.org/10.3389/fncel.2020.00021
- S. Luo, E. Zhang, Y. Su, et al., A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127-7138 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.024
- H. Ma, C. Liu, Z. Hu, et al., Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.9b05159
- P.T. Meyer, L. Frings, G. Rucker, S. Hellwig, 18F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J. Nucl. Med. 58, 1888-1898 (2017). https://doi.org/10.2967/jnumed.116.186403
- R. Miao, L.Y. Xia, H.H. Chen, et al., Improved classification of blood-brain-barrier drugs using deep learning. Sci. Rep. 9, 1-11 (2019). https://doi.org/10.1038/s41598-019-44773-4
- M. Neema, J. Stankiewicz, A. Arora, et al., MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 4, 602-617 (2007). https://doi.org/10.1016/j.nurt.2007.08.001
- Q. Ni, S. Mehta, J. Zhang, Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J. 285, 203-219 (2018). https://doi.org/10.1111/febs.14134
- S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 87, 9868-9872 (1990). https://doi.org/10.1073/pnas.87.24.9868
- D. Packer, The history of the antibody as a tool. Acta Histochem. 123(4), 151710 (2021). https://doi.org/10.1016/j.acthis.2021.151710 Online ahead of print
- M. Pannell, V. Economopoulos, T.C. Wilson, et al., Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia 68, 280-297 (2020). https://doi.org/10.1002/glia.23716
- H. Parfenova, C. Leffler, Cerebroprotective functions of HO-2. Curr. Pharm. Des. 14, 443-453 (2008). https://doi.org/10.2174/138161208783597380
- S.J. Park, C.J.H. Ho, S. Arai, et al., Visualizing Alzheimer's disease mouse brain with multispectral optoacoustic tomography using a fluorescent probe, CDnir7. Sci. Rep. 9, 5-12 (2019a). https://doi.org/10.1038/s41598-019-48329-4
- S.J. Park, B. Kim, S. Choi, et al., Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat. Commun. 10(1), 1111 (2019b). https://doi.org/10.1038/s41467-019-08990-9
- M. Perrone, B.S. Moon, H.S. Park, et al., A novel PET imaging probe for the detection and monitoring of translocator protein 18 kDa expression in pathological disorders. Sci. Rep. 6, 20422 (2016). https://doi.org/10.1038/srep20422
- M.G. Preti, N. Makris, G. Papadimitriou, et al., A novel approach of groupwise fMRI-guided tractography allowing to characterize the clinical evolution of Alzheimer's disease. PLoS One 9(3), e92026 (2014). https://doi.org/10.1371/journal.pone.0092026
- C. Qu, Y. Xiao, H. Zhou, et al., Quaternary ammonium salt based NIR-II probes for in vivo imaging. Adv. Opt. Mater. (2019). https://doi.org/10.1002/adom.201900229
- N. Quartuccio, R. Laudicella, A. Vento, et al., The additional value of 18F-FDG PET and MRI in patients with glioma: a review of the literature from 2015 to 2020. Diagnostics 10, 357 (2020). https://doi.org/10.3390/diagnostics10060357
- N. Schleich, F. Danhier, V. Preat, Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J. Control. Release 198, 35-54 (2015)
- M.I. Sereno, A.M. Dale, J.B. Reppas, et al., Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889-893 (1995). https://doi.org/10.1126/science.7754376
- M.G. Shapiro, G.G. Westmeyer, P.A. Romero, et al., Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat. Biotechnol. 28, 264-270 (2010). https://doi.org/10.1038/nbt.1609
- J. Sharkey, P.J. Starkey Lewis, M. Barrow, et al., Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance-based detection in vivo. Cytotherapy 19, 555-569 (2017). https://doi.org/10.1016/j.jcyt.2017.01.003
- T. Shimokawa, T. Ishii, Y. Takahashi, et al., Development of multi-directional functional near-infrared spectroscopy system for human neuroimaging studies. Biomed. Opt. Express 10, 1393 (2019). https://doi.org/10.1364/boe.10.001393
- J. Shin, J. Kwon, J. Choi, C.H. Im, Performance enhancement of a brain-computer interface using high-density multi-distance NIRS. Sci. Rep. 7, 1-10 (2017). https://doi.org/10.1038/s41598-017-16639-0
- P. Sirpal, A. Kassab, P. Pouliot, D.K. Nguyen, fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 24, 1 (2019). https://doi.org/10.1117/1.jbo.24.5.051408
- J. Steinbrink, A. Villringer, F. Kempf, et al., Illuminating the BOLD signal: Combined fMRI-fNIRS studies. Magn. Reson. Imaging 24, 495-505 (2006). https://doi.org/10.1016/j.mri.2005.12.034
- S. Stuart, R. Vitorio, R. Morris, et al., Cortical activity during walking and balance tasks in older adults and Parkinson's disease: a structured review. Maturitas 113, 53-72 (2019). https://doi.org/10.1016/j.maturitas.2018.04.011.Cortical
- Y. Sun, M. Ding, X. Zeng, et al., Novel bright-emission small-molecule NIR-II fluorophores for: In vivo tumor imaging and image-guided surgery. Chem. Sci. 8, 3489-3493 (2017). https://doi.org/10.1039/c7sc00251c
- Z. Tao, G. Hong, C. Shinji, et al., Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chemie. Int. Ed. 52, 13002-13006 (2013). https://doi.org/10.1002/anie.201307346
- R.T. Thibault, A. MacPherson, M. Lifshitz, et al., Neurofeedback with fMRI: A critical systematic review. Neuroimage 172, 786-807 (2018). https://doi.org/10.1016/j.neuroimage.2017.12.071
- J. Tian, J. Wang, W. Quan, et al., The functional near-infrared spectroscopy in the diagnosis of schizophrenia. Eur. J. Psychiatry 33, 97-103 (2019). https://doi.org/10.1016/j.ejpsy.2019.05.001
- R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998)
- J. Wahsner, E.M. Gale, A. Rodriguez-Rodriguez, P. Caravan, Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 119, 957-1057 (2019)
- H. Wan, J. Yue, S. Zhu, et al., A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018). https://doi.org/10.1038/s41467-018-03505-4
- S. Wang, Y. Fan, D. Li, et al., Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-09043-x
- J.A. Witjes, J. Douglass, The role of hexaminolevulinate fluorescence cystoscopy in bladder cancer. Nat. Clin. Pract. Urol. 4, 542-549 (2007)
- W. Wu, Y. Yang, Y. Yang, et al., Molecular engineering of an organic NIR-II fluorophore with aggregation-induced emission characteristics for in vivo imaging. Small 15, 1-10 (2019). https://doi.org/10.1002/smll.201805549
- Y.D. Xiao, R. Paudel, J. Liu, et al., MRI contrast agents: Classification and application (review). Int. J. Mol. Med. 38, 1319-1326 (2016). https://doi.org/10.3892/ijmm.2016.2744
- P. Xu, F. Kang, W. Yang, et al., Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for: In vivo imaging. Nanoscale. (2020). https://doi.org/10.1039/c9nr09999a
- J. Yang, Y. Zaim Wadghiri, D. Minh Hoang, et al., Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging. Neuroimage 55, 1600-1609 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.023
- M. Yang, Z. Yang, T. Yuan, et al., A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front. Neurol. 10, 1-14 (2019). https://doi.org/10.3389/fneur.2019.00058
- S.W. Yun, N.Y. Kang, S.J. Park, et al., Diversity oriented fluorescence library approach (DOFLA) for live cell imaging probe development. Acc. Chem. Res. 47, 1277-1286 (2014). https://doi.org/10.1021/ar400285f
- S.-W. Yun, C. Leong, D. Zhai, et al., Neural stem cell specific fluorescent chemical probe binding to FABP7. Proc. Natl. Acad. Sci. U. S. A. 109, 10214-10217 (2012). https://doi.org/10.1073/pnas.1200817109
- L. Zhang, C. Liu, S. Zhou, et al., Improving quantum yield of a NIR-II dye by Phenylazo group. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.201901470
- X.D. Zhang, H. Wang, A.L. Antaris, et al., Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872-6879 (2016). https://doi.org/10.1002/adma.201600706
- J. Zhao, J. Chen, S. Ma, et al., Recent developments in multimodality fluorescence imaging probes. Acta Pharm. Sin. B 8, 320-338 (2018). https://doi.org/10.1016/j.apsb.2018.03.010
- M. Zhao, B. Li, H. Zhang, F. Zhang, Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem. Sci. (2021). https://doi.org/10.1039/d0sc04789a
- Y. Zhong, Z. Ma, S. Zhu, et al., Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 1-7 (2017). https://doi.org/10.1038/s41467-017-00917-6
- Z. Zhou, L. Yang, J. Gao, X. Chen, Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 31, 1-32 (2019). https://doi.org/10.1002/adma.201804567