DOI QR코드

DOI QR Code

Analyzing Ecological Soundness Considering the Implicit Weight of the Indicator

지표의 내재적 가중치를 고려한 하천의 생태적 건전성 평가

  • Kim, Hong-Myung (Department of Urban Engineering, Chungbuk National University) ;
  • Ha, Sung-Ryong (Department of Urban Engineering, Chungbuk National University)
  • Received : 2021.08.09
  • Accepted : 2021.08.18
  • Published : 2021.08.31

Abstract

The purpose of this study is to establish a system to evaluate the ecological soundness of the Geum river basin. The study target area is 14 sub-watersheds of the Geum river basin. For the selection of indicators to ensure transparency and consistency of the evaluation indicators, the ecological soundness indicators were secured by using the indicator adjustment method derived in consideration of the intrinsic weight change characteristics between indicators. The index with the greatest impact on the final composite index was identified as the index of the aquatic ecology among the water quantity, water quality, aquatic ecology, and habitat-riparian environment dimensions. As a result of analyzing the ecological health index of the river, the watershed upstream of the dam (based on the Daecheong -dam) was evaluated to be in relatively good condition until 2014 compared to the base year(2008), and the watershed downstream of the dam was evaluated to be in a poor condition. The annual trend of changes in the ecological soundness index on an annual basis is as follows. In the case of Yongdamdam, Yongdamdamdownstream, Bocheong-chun, Daechungdam, Daechungdamdownstream, and Nonsancheon, although there are differences by time period, the soundness index is in declining. On the other hand, Mujunamdaecheon, Yeongdongcheon, and Gapcheon were evaluated to have improved soundness, while Chogang, Daechungdamupstream, Mihocheon, Gongjugeumgang, and Geumgangestuary were evaluated to deteriorate again after soundness was improved.

본 연구의 목적은 금강수계 하천의 생태적 건전성을 평가하는 체계를 구축하는 것이다. 연구대상 지역은 금강수계 14개 중권역으로 하였다. 평가지표의 투명성과 일관성을 확보하기 위하여, 건전성 지표 선정은 지표 간 내재적 가중치 변화 특성을 고려한 조정방법을 사용하여 선정하였다. 최종 통합지수에 미치는 영향이 가장 큰 지표는 수량, 수질, 수생태, 서식·수변환경 부문 중 수생태 부문의 지수로 파악되었다. 하천의 생태적 건전성 지수를 분석한 결과, 댐상류 유역(대청댐 기준)은 2014년까지 기준년도(2008)에 비해 상대적으로 좋은 상태로 평가되었으며 댐하류 유역은 좋지 않은 상태로 평가되었다. 년 단위 생태적 건전성 지수의 변화 추이는 다음과 같다. 용담댐, 용담댐하류, 보청천, 대청댐, 대청댐하류, 논산천의 경우는 시기별 차이는 있으나 건전성 지수의 저하가 진행되고 있다. 반면, 무주남대천, 영동천, 갑천의 경우는 건전성이 개선되고 있는 것으로 평가되었으며 초강, 대청댐상류, 미호천, 금강공주, 금강하구언은 건전성이 개선된 후 다시 저하되는 것으로 평가되었다.

Keywords

Acknowledgement

이 논문은 2020학년도 충북대학교 연구년제 지원에 의하여 연구되었음.

References

  1. Becker W, Saisana M, Paruolo P, Vandecasteele I. 2017. Weights and importance in composite indicators: Closing the gap. Ecological indicators 80: 12-22. https://doi.org/10.1016/j.ecolind.2017.03.056
  2. Becker W. 2017. Matlab toolbox for analysis and adjustment of weigths in composite indicators, European Commission. Joint Research Centre, http://dx.doi.org/10.13140/RG.2.2.27035.46883.
  3. Diamantopoulos K, Riefler P, Roth KP. 2008. Advancing formative measurement models. Journal of Business Research 61: 1203-1218. https://doi.org/10.1016/j.jbusres.2008.01.009
  4. Hauben M, Hung E, Hsieh WY. 2017. An exploratory factor analysis of the spontaneous reporting of severe cutaneous adverse reactions. Therapeutic Advances in Drug Safety 8(1): 4-16. https://doi.org/10.1177/2042098616670799
  5. Joo HG, Lee MG, Choi CG, Kim SJ, Kim HS. 2018. A Study on the selection of representative indicators of flood vulnerability assessment. Journal of the Korean Society of Hazard Mitigation 18(6): 335-346. https://doi.org/10.9798/kosham.2018.18.6.335
  6. Kim YS. 2016. Development of resilience indicator based on big data analysis under climate chang, Inha University, PhD thesis.
  7. Korea Water Resources Corporation. 2018. Study on the development a system for evaluating the health of the rivers comprehensively. KIWE-WSO-17-15.
  8. Linden D. 2018. Exploration of implicit weights in composite indicators. KTH Royal institute of technology, Stockholm, Sweden.
  9. Mara TA, Tarantola S. 2012. Variance-based sensitivity indices for models with dependent inputs. Reliability Engineering & System Safety 107: 115-121. https://doi.org/10.1016/j.ress.2011.08.008
  10. Mazziotta M, Pareto A. 2018. Measuring Well-Being Over Time: The adjusted MazziottaPareto index versus other non-compensatory indices. Social Indicators Research 136: 967-976. https://doi.org/10.1007/s11205-017-1577-5
  11. Mazziotta M, Pareto A. 2016. On a generalized non-compensatory composite index for measuring socio-economic phenomena. Social Indicators Research 127: 983-1003. https://doi.org/10.1007/s11205-015-0998-2
  12. Munda G, Nardo M. 2005. Constructing consistent composite indicators: The Issue of Weights. EUR 21834 EN.
  13. OECD. 2008. Handbook on constructing composite indicators: methodology and user guide, available at https://www.oecd.org/sdd/42495745.pdf.
  14. Paruolo P, Saisana M, Saltelli A. 2013. Ratings and rankings: voodoo or science? Journal of the Royal Statistical Society: Series A, Statistics in Society 176L 609-634. https://doi.org/10.1111/j.1467-985X.2012.01059.x
  15. Pinto U, Maheshwari B. 2011. River health assessment in Peri-urban landscapes: an application of multivariate analysis to identify the key variables. Water Res. 45: 3915-3924. https://doi.org/10.1016/j.watres.2011.04.044
  16. Rowley HV, Peters GM, Lundie S, Moore SJ. 2012. Aggregating sustainability indicators: beyond the weighted sum. Journal of Environmental Management 111: 24-33. https://doi.org/10.1016/j.jenvman.2012.05.004
  17. Saisana M, Saltelli A. 2011. Rankings and ratings: Instructions for use. Hague Journal on the Rule of Law 3: 247-268. https://doi.org/10.1017/S1876404511200058
  18. Xu C, Gertner GZ. 2008. Uncertainty and sensitivity analysis for models with correlated parameters. Reliability Engineering & System Safety 93: 1563-1573. https://doi.org/10.1016/j.ress.2007.06.003