DOI QR코드

DOI QR Code

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar

철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화

  • Choi, Yu-Lim (Department of Environmental Engineering, Kwangwoon University) ;
  • Kim, Dong-Su (Department of Environmental Engineering, Kwangwoon University) ;
  • Kang, Tae-Jun (Department of Environmental Engineering, Kwangwoon University) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
  • Received : 2021.08.06
  • Accepted : 2021.08.16
  • Published : 2021.08.31

Abstract

In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.

본 연구에서는 기존 바이오차의 제한점인 비소 오염 토양 안정화에 대한 낮은 효율과 비산에 의한 유실 가능성을 개선할 수 있는 철 나노입자가 담지된 바이오차 기반 비드 형태 안정화제인 INPBC/bead (Iron Nano-Particles Impregnated BioChar/bead)를 제조하였다. 폐목재 바이오매스를 Fe(III) 용액과 함께 수열 반응을 진행하고 이후 소성을 거쳐 INPBC를 제조하였다. INPBC/bead는 알지네이트의 cross-linking 반응을 통해 제조 하였다. 제조한 INPBC/bead의 특성을 평가하기 위해 FT-IR, XRD, BET 비표 면적, SEM-EDS 분석을 실시하였다. 특성 평가 결과 입자 크기가 1-4 mm인 INPBC/bead는 여러 산소 함유 관능기를 보유하며 표면의 철 결정성은 Fe3O4인 것으로 확인되었다. INPBC/bead의 성능을 평가하기 위해 폐광산 주변 지역에서 채취한 비소 및 중금속 오염 토양을 이용하여 배양 실험을 실시하였다. 4주 동안의 배양이 종료된 후 처리된 토양을 대상으로 TCLP, SPLP 시험을 실시한 결과 안정화제 적용 비율이 증가함에 따라 안정화 효율은 높아지는 것으로 확인되었다. SPLP 시험 결과, INPBC/bead 5%의 비소 안정화 효율은 81.56%이며 납의 경우에는 농도가 검출한계 미만으로 저감되었다. 상기의 결과를 종합하였을 때 INPBC/bead는 토양 중 비소와 납에 대한 안정화 효과를 동시에 보유하고 토양의 pH 변화를 일으키지 않으며 비드 형태로써 적용 과정에서 비산되는 것이 방지할 수 있는 안정화제이기 때문에 비소 및 중금속 복합 오염 토양 안정화에 적용 가능성이 높은 안정화제 인 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 중소기업기술정보진흥원의 산학연 Collabo R&D사업인 "양이온 및 음이온계 복합 오염 토양의 위해 성 확산 방지를 위한 IOHC (Iron Oxide nanoparticles impregnated HydroChar) 기반 조기 안정화 기술 개발(기관과제번호:SS2910834)" 연구의 지원과 2021년도 광운대학교 우수연구자 지원 사업에 의해 연구되었음.

References

  1. Blackwell P, Riethmuller G, Collins M. 2009. Chapter 12: biochar application to soil, Biochar for Environmental Management Science and Technology. Earthscan.
  2. Brassard P, Godbout S, Raghavan V. 2016. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. Journal of Environmental Management 181: 484-497. https://doi.org/10.1016/j.jenvman.2016.06.063
  3. Chia CH, Downie A, Munroe P. 2015. Characteristics of biochar: physical and structural properties. Biochar for Environmental Management (Science, Technology and Implementation).
  4. Choi YL, Ganesh KRA, Ahn HY, Park KJ, Joo WH, Yang JK, Chang YY. 2020. Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil. J. Environ. Impact Assess. 29(5): 350-362. https://doi.org/10.14249/EIA.2020.29.5.350
  5. Dixit S, Hering JG. 2003. Comparison of Arsenic (V) and Arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37(18): 4182-4189. https://doi.org/10.1021/es030309t
  6. Enaime G, Bacaoui A, Yaacoubi A, Lubken M. 2020. Biochar for Wastewater Treatment-Conversion Technologies and Applications. Appl. Sci. 10: 1-29.
  7. Gregory SJ, Anderson CWN, Camps-Arbestain M, Biggs PJ, Ganley ARD, Sullivan JMO, McManus MT. 2015. Biochar in Co-Contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PLoS ONE 10(4): e0125393. https://doi.org/10.1371/journal.pone.0125393
  8. He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China, Environmetal Pollution, 252, pp. 846-855. https://doi.org/10.1016/j.envpol.2019.05.151
  9. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - A review. Soil Biol. Biochem. 43: 1812-1836 https://doi.org/10.1016/j.soilbio.2011.04.022
  10. Liu A, Liu J, Han J, Zhang WX. 2017. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. Journal of Hazardous Materials 322: 129-135. https://doi.org/10.1016/j.jhazmat.2015.12.070
  11. Lyu H, Tang J, Huang Y, Gai L, Zeng EY, Liber K. 2017. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J. 322: 516-524. https://doi.org/10.1016/j.cej.2017.04.058
  12. Mandal S, Pu S, Wang X, Ma H, Bai Y. 2020. Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil. Science of the Total Environment 708: 134831. https://doi.org/10.1016/j.scitotenv.2019.134831
  13. Major J, Lehmann J, Rondon M, Goodale C. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biol. 16: 1366-1379. https://doi.org/10.1111/j.1365-2486.2009.02044.x
  14. NAAS (National Academy of Agricultural Science), Korea. 2010. Analysis Method of Soil Chemistry.
  15. Nelli ST, Ramsurn H. 2018. Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrix using biochar from biomass model compounds as a support. Carbon 134: 480-490. https://doi.org/10.1016/j.carbon.2018.03.079
  16. NIER (National Institute of Environmental Research). 2018. Standard methods for the examiantion of environmental soil pollution.
  17. Pradhan GK, Sahu N, Parida KM. 2013. Fabrication of S, N co-doped a-Fe2O3 nanostructures: effect of doping, OH radical formation, surface area, plane and particle size on the photocatalyticactivity. RSC Adv. 3: 7912-7920. https://doi.org/10.1039/c3ra23088k
  18. Trevor P, Mike F, Yanqiu Z, Paul DB. 2009. Process Map for the Hydrothermal Synthesis of r-Fe2O3 Nanorods. J. Phys. Chem. C. 113: 18689-18698. https://doi.org/10.1021/jp907081j
  19. Vithange MM, Hearth I, Joseph S, Budndschuh J, Bolan N, Ok YS, Kirkham MB, Rinklebe J. 2016. Interaction of arsenic with biochar in soil and water: A critical review. Carbon 113: 219-230. https://doi.org/10.1016/j.carbon.2016.11.032
  20. Wang Y, Wang HS, Tang CS, Gu K, Shi B. 2019. Remediation of heavy-metal-contaminated soils by biochar: a reivew, Environmental Geotechnics, https://doi.org/10.1680/jenge.18.00091.
  21. Wu M, Ma J, Cai Z, Tian G, Yang S, Wang Y, Liu X. 2015. Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization. RSC Adv. 5: 88703-88709. https://doi.org/10.1039/C5RA13236C