DOI QR코드

DOI QR Code

Regional Categorization of Gyeonggi Province for Fine Dust Management

경기도 지역 미세먼지 관리를 위한 권역 범주화 연구

  • Lee, Su-Min (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Lee, Tae-Jung (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Oh, Jongmin (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Sang-Cheol (Environmental Safety Management Division, Gyenggi-do) ;
  • Jo, Young-Min (Department of Environmental Science and Engineering, Kyung Hee University)
  • 이수민 (경희대학교 환경응용과학과) ;
  • 이태정 (경희대학교 환경응용과학과) ;
  • 오종민 (경희대학교 환경응용과학과) ;
  • 김상철 (경기도 환경안전관리과) ;
  • 조영민 (경희대학교 환경응용과학과)
  • Received : 2021.08.04
  • Accepted : 2021.08.20
  • Published : 2021.08.31

Abstract

The similarity of hourly PM10 and PM2.5 concentration profiles of the atmospheric monitoring stations in Gyeonggi-do was evaluated through the multilateral analysis between stations. The existing category for most stations in the regions shows relatively low Pearson correlation values of 0.68 and 0.7 for PM10 and PM2.5 on average respectively, and some monitoring stations revealed high relationships over 0.8 to other regions. Since the current regions are mainly categorized by cluster analysis based on the number of occurrence of high concentration events and geological factors, it is necessary to reclassify them by concentration characteristics for precise fine dust management. In accordance, multi-dimensional scaling being able to visualize could categorize the regions based on regional emission contribution rate and hourly fine dust concentration. As a result of the current analysis, PM10 and PM2.5 could be reclassified into five regions and fourregions, respectively.

경기도 도시대기측정망의 시간별 PM10과 PM2.5 농도에 대하여 측정소별로 상관성을 분석하여 측정소별 미세먼지 농도자료의 유사성을 파악해보았다. 미세먼지 경보제를 위해 사용되고 있는 기존의 권역구분을 그대로 이용했을 때, 동일한 권역 내의 측정소들은 PM10의 경우 0.68, PM2.5는 0.70 이상의 피어슨 상관계수 값을 보였으나, 일부 측정소는 타 권역과 높은 상관성(예, 0.80 이상)을 보여주고 있었다. 또한, 현재 구분하고 있는 권역은 주로 고농도 사례 횟수에 따른 군집분석 결과와 지리적 요인 등을 복합적으로 고려하여 결정된 것이므로, 미세먼지 관리를 위해서는 농도 특성에 따라 권역을 재분류할 필요성이 있다. 따라서 본 연구에서는 다차원척도법을 이용하여 미세먼지의 시간별 농도변화와 지역별 배출 기여율을 고려한 재범주화를 진행할 수 있었고, 이를 시각적으로 도시화할 수 있었다. 그 결과, PM10은 5개의 권역으로 분류되고, PM2.5는 4개의 권역으로 구분되었다.

Keywords

Acknowledgement

이 논문은 경기녹색환경지원센터의 「경기도 다중 이용시설 실내공기질 빅데이터 분석 및 IAQ 지수 개발(21-05-01-40-41)」의 일환으로 수행되었으며, 이에 감사드립니다.

References

  1. AirKorea. 2021. https://www.airkorea.or.kr/. Korea Environment Corporation.
  2. Bae MS, Jung CH, Ghim YS, Kim KH. 2013. A Proposal for the Upgrade of the Current Operating System of the Seoul's Atmospheric Monitoring Network Based on Statistical Analysis. Journal of Korean Society for Atmospheric Environment 29(4): 447-458. [Korean Literature] https://doi.org/10.5572/KOSAE.2013.29.4.447
  3. Cha JW, Kim JY. 2018. Analysis of fine dust correlation between air quality and meteorological factors using SPSS. Journal of the Korea Institute of Information and Communication Engineering 22(5): 722-727. [Korean Literature] https://doi.org/10.6109/JKIICE.2018.22.4.722
  4. Choi J, Park RJ, Lee HM, Lee S, Jo DS, Jeong JI, Henze DK, Woo JH, Ban SJ, Lee MD, Lim CS, Park MK, Shin HJ, Cho S, Peterson D, Song CK. 2019. Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmospheric Environment 203: 196-205. https://doi.org/10.1016/j.atmosenv.2019.02.008
  5. Choi YS. 2014. Walk in Multidimensional Scaling, Free Academy, Seoul. [Korean Literature]
  6. Cox TF, Cox MAA. 2000. Multidimensional Scaling (2nd ed), Chapman & Hall, London.
  7. Flemming J, Stern R, Yamartino RJ. 2005. A new air quality regime classification scheme for O3, NO2, SO2, and PM10 observations sites. Atmospheric Environment 39: 6121-6129. https://doi.org/10.1016/j.atmosenv.2005.06.039
  8. Gyeonggi Research Institute (GRI). 2020. Establishment of Gyeonggi-do fine dust inventory and management system. [Korean Literature]
  9. Han JH, Lee MH, Ghim YS. 2008. Cluster Analysis of PM10 Concentrations from Urban Air Monitoring Network in Korea during 2000 to 2005. Journal of Korean Society for Atmospheric Environment 24(3): 300-309. [Korean Literature] https://doi.org/10.5572/KOSAE.2008.24.3.300
  10. Jeong JC. 2014. A Spatial Distribution Analysis and Time Series Change of PM10 in Seoul City. Journal of the Korean Association of Geographic Information Studies 17(1); 61-69. [Korean Literature] https://doi.org/10.11108/kagis.2014.17.1.061
  11. Jeong U, Kim J, Lee H, Jung J, Kim YJ, Song CH, Koo JH. 2011. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. Journal of Environmental Monitoring 13: 1905-1918. https://doi.org/10.1039/c0em00659a
  12. Jha DK, Sabesan M, Das A, Vinithkumar NV, Kirubagaran R. 2011. Evaluation of Interpolation Technique for Air Quality Parameters in Port Blair, India. Universal Journal of Environmental Research and Technology. 1(3): 301-310.
  13. Kim DY. 2017. Establishment of Investigation System on Air Pollutants Emission Facilities in Gyeonggi-Do, Research Report of Gyeonggi Research Institute. [Korean Literature]
  14. Korean Statistical Information Service (KOSIS). 2021. Korea Statistical Information Service. https://kosis.kr/
  15. Ministry of Environment (MOE). 2020. Annual Report of Air Quality in Korea, 2019. [Korean Literature]
  16. National Institute of Environmental Research (NIER). 2020. 2017 National Air Pollutants Emission. [Korean Literature]
  17. Shim KS, Woo JS, Kim BJ, Kim SK, Hong SM. 2015. A Study on the Establishment of Air Pollution Alert Zones in Gyeonggi-do, Research Report (2015) by Ambient Air Research Team. Research Institute of Health and Environment of Gyeong Gi Do. [Korean Literature]
  18. Shin MS, Chun SK, Choi YS. 2018. Multidimensional scaling of categorical data using the partition method, The Korean Journal of Applied Statistics. 31(1): 67-75. [Korean Literature] https://doi.org/10.5351/KJAS.2018.31.1.067
  19. Song IS, Kim SY. 2016. Estimation of Representative Area-Level Concentrations of Particulate Matter (PM10) in Seoul, Korea. Journal of the Korean Association of Geographic Information Studies 19(4): 118-129. [Korean Literature] https://doi.org/10.11108/kagis.2016.19.4.118
  20. Yoon HJ, Kim DS. 1997. Spatial distribution analysis of metallic elements in dustfall using GIS. Journal of the Korea Air Pollution Research Association 13(6): 463-474. [Korean Literature]
  21. You S, Bae C, Kim H, Yoo C, Kim S. 2020. Municipality-Level Source Apportionment of PM2.5 Concentrations based on the CAPSS 2016: (I) Gyeonggi Province. Journal of Korean Society for Atmospheric Environment 36(6): 785-805. [Korean Literature] https://doi.org/10.5572/KOSAE.2020.36.6.785