References
- M. L. Pinedo. (2016). Scheduling: Theory, Algorithms, and Systems (5th Ed.). New York : Springer.
- K. R. Baker & D. Trietsch. (2019). Principles of Sequencing and Scheduling (2nd Ed.). New York : Wiley.
- J. Ding, S. Schulz, L. Shen, U. Buscher & Z. Lu. (2021). Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization. Computers and Operations Research, 125. 105088 DOI : 10.1016/j.cor.2020.105088
- G. Gong, R. Chiong, Q. Deng, W. Han, L. Zhang, W. Lin & K. Li. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 141. 112902 DOI : 10.1016/j.eswa.2019.112902
- A. Ernst, J. Fung, G. Singh & Y. Zinder. (2019). Flexible flow shop with dedicated buffers. Discrete Applied Mathematics, 261, 148-163. https://doi.org/10.1016/j.dam.2018.07.002
- H. Ahonen & A. G. de Alvarenga. (2017). Scheduling flexible flow shop with recirculation and machine sequence-dependent processing times: formulation and solution procedures. International Journal of Advanced Manufacturing Technology, 89, 765-777. https://doi.org/10.1007/s00170-016-9093-3
- M. Gendreau & J.-Y. Potvin (eds) (2018). Handbook of Metaheuristics (3rd Ed.). New York : Springer.
- M. Almaraashi, R. John, A. Hopgood & S. Ahmadi (2016). Learning of interval and general type-2 fuzzy logic systems using simulated annealing: Theory and practice. Information Sciences, 360, 21-42. https://doi.org/10.1016/j.ins.2016.03.047
- M. T. Assadi & M. Bagher. (2016). Differential evolution and Population-based simulated annealing for truck scheduling problem in multiple door cross-docking systems. Computers & Industrial Engineering, 96, 149-161. https://doi.org/10.1016/j.cie.2016.03.021
- R. Bellio, S. Ceschia, L.D. Gaspero, A. Schaerf & T. Urli. (2016). Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem. Computers & Operations Research, 65, 83-92. https://doi.org/10.1016/j.cor.2015.07.002
- V. Courchelle, M. Soler, D. Gonzalez-Arribas & D. Delahaye. (2019). A simulated annealing approach to 3D strategic aircraft deconfliction based on en-route speed changes under wind and temperature uncertainties. Transportation Research Part C: Emerging Technologies, 103, 194-210. https://doi.org/10.1016/j.trc.2019.03.024
- M. L. D. Dias & A. R. R. Neto. (2017). Training soft margin support vector machines by simulated annealing: A dual approach. Expert Systems with Applications, 87, 157-169. https://doi.org/10.1016/j.eswa.2017.06.016
- A. M. Fathollahi-Fard, K. Govindan, M. Hajiaghaei-Keshteli & A. Ahmadi. (2019). A green home health care supply chain: New modified simulated annealing algorithms. Journal of Cleaner Production, 240. 118200. DOI : 10.1016/j.jclepro.2019.118200
- A. A. Kida, A. E. L. Rivas & L. A. Gallego. (2020). An improved simulated annealing-linear programming hybrid algorithm applied to the optimal coordination of directional overcurrent relays. Electric Power Systems Research, 181. 106197. DOI : /10.1016/j.epsr.2020.106197
- D. E. Goldberg. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading : Addison Wesley.