DOI QR코드

DOI QR Code

Minimizing the total completion time in a two-stage flexible flow shop

2 단계 유연 흐름 생산에서 평균 완료 시간 최소화 문제

  • Yoon, Suk-Hun (Department of Industrial and Information Systems Engineering Soongsil University)
  • 윤석훈 (숭실대학교 산업정보시스템공학과)
  • Received : 2021.07.10
  • Accepted : 2021.08.20
  • Published : 2021.08.28

Abstract

This paper addresses a two-stage flexible flow shop scheduling problem in which there is one machine in stage 1 and two identical machines in stage 2. The objective is the minimization of the total completion time. The problem is formulated by a mixed integer quadratic programming (MIQP) and a hybrid simulated annealing (HSA) is proposed to solve the MIQP. The HSA adopts the exploration capabilities of a genetic algorithm and incorporates a simulated annealing to reduce the premature convergence. Extensive computational tests on randomly generated problems are carried out to evaluate the performance of the HSA.

이 논문은 단계 1에 기계 한 대, 단계 2에 2대의 병렬 기계가 있는 유연 흐름 생산 스케줄링 문제를 다룬다. 목적 함수는 평균 완료 시간을 최소화하는 것이다. 이 문제를 혼합 정수 2차 문제로 정식화하여 혼합 시뮬레이티드 어닐링을 이용하여 풀었다. 혼합 시뮬레이티드 어닐링은 유전자 알고리즘의 탐색 능력을 이용하고 시뮬레이티드 어닐링을 적용하여 너무 이른 수렴 현상을 줄이는 방법이다. 실험을 통하여 혼합 시뮬레이티드 어닐링의 성능을 평가하였다.

Keywords

References

  1. M. L. Pinedo. (2016). Scheduling: Theory, Algorithms, and Systems (5th Ed.). New York : Springer.
  2. K. R. Baker & D. Trietsch. (2019). Principles of Sequencing and Scheduling (2nd Ed.). New York : Wiley.
  3. J. Ding, S. Schulz, L. Shen, U. Buscher & Z. Lu. (2021). Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization. Computers and Operations Research, 125. 105088 DOI : 10.1016/j.cor.2020.105088
  4. G. Gong, R. Chiong, Q. Deng, W. Han, L. Zhang, W. Lin & K. Li. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 141. 112902 DOI : 10.1016/j.eswa.2019.112902
  5. A. Ernst, J. Fung, G. Singh & Y. Zinder. (2019). Flexible flow shop with dedicated buffers. Discrete Applied Mathematics, 261, 148-163. https://doi.org/10.1016/j.dam.2018.07.002
  6. H. Ahonen & A. G. de Alvarenga. (2017). Scheduling flexible flow shop with recirculation and machine sequence-dependent processing times: formulation and solution procedures. International Journal of Advanced Manufacturing Technology, 89, 765-777. https://doi.org/10.1007/s00170-016-9093-3
  7. M. Gendreau & J.-Y. Potvin (eds) (2018). Handbook of Metaheuristics (3rd Ed.). New York : Springer.
  8. M. Almaraashi, R. John, A. Hopgood & S. Ahmadi (2016). Learning of interval and general type-2 fuzzy logic systems using simulated annealing: Theory and practice. Information Sciences, 360, 21-42. https://doi.org/10.1016/j.ins.2016.03.047
  9. M. T. Assadi & M. Bagher. (2016). Differential evolution and Population-based simulated annealing for truck scheduling problem in multiple door cross-docking systems. Computers & Industrial Engineering, 96, 149-161. https://doi.org/10.1016/j.cie.2016.03.021
  10. R. Bellio, S. Ceschia, L.D. Gaspero, A. Schaerf & T. Urli. (2016). Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem. Computers & Operations Research, 65, 83-92. https://doi.org/10.1016/j.cor.2015.07.002
  11. V. Courchelle, M. Soler, D. Gonzalez-Arribas & D. Delahaye. (2019). A simulated annealing approach to 3D strategic aircraft deconfliction based on en-route speed changes under wind and temperature uncertainties. Transportation Research Part C: Emerging Technologies, 103, 194-210. https://doi.org/10.1016/j.trc.2019.03.024
  12. M. L. D. Dias & A. R. R. Neto. (2017). Training soft margin support vector machines by simulated annealing: A dual approach. Expert Systems with Applications, 87, 157-169. https://doi.org/10.1016/j.eswa.2017.06.016
  13. A. M. Fathollahi-Fard, K. Govindan, M. Hajiaghaei-Keshteli & A. Ahmadi. (2019). A green home health care supply chain: New modified simulated annealing algorithms. Journal of Cleaner Production, 240. 118200. DOI : 10.1016/j.jclepro.2019.118200
  14. A. A. Kida, A. E. L. Rivas & L. A. Gallego. (2020). An improved simulated annealing-linear programming hybrid algorithm applied to the optimal coordination of directional overcurrent relays. Electric Power Systems Research, 181. 106197. DOI : /10.1016/j.epsr.2020.106197
  15. D. E. Goldberg. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading : Addison Wesley.