DOI QR코드

DOI QR Code

In Vitro Tissue Culture Frequency and Transformation of Various Cultivars of Soybean (Glycine max (L.) Merr.)

다양한 콩 자원들의 기내 조직배양 효율 및 형질전환

  • Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Cho, Chuloh (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Jeong, Namhee (Fruit Research Division, National Institute of Horticultural and Herbal Science) ;
  • Sung, Soon-Kee (Crop Seed R&D Team, Farmhannong Co., Ltd.) ;
  • Choi, Man-Soo (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Jin, Mina (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science)
  • 서미숙 (국립식량과학원 작물기초기반과) ;
  • 조철오 (국립식량과학원 작물기초기반과) ;
  • 정남희 (국립원예특작과학원 과수과) ;
  • 성순기 ((주)팜한농, 종자.식량종자개발팀) ;
  • 최만수 (국립식량과학원 작물기초기반과) ;
  • 진민아 (국립식량과학원 작물기초기반과) ;
  • 김둘이 (국립식량과학원 작물기초기반과)
  • Received : 2021.05.13
  • Accepted : 2021.06.17
  • Published : 2021.08.01

Abstract

Efficient in vitro regeneration system is essential for the successful crop breeding of soybean (Glycine max (L.) Merr.) using the new biotechnology. The genotype of donor plants strongly influences the establishment of tissue culture system. Therefore, the screening of genotypes with excellent tissue culture ability is very important for soybean genetic improvement. In this study, we report the tissue culture efficiency of 21 soybean cultivars belong to Korean soybean core-collection and two foreign cultivars (Jack and Maverick). The Kwangan, Anpyeong and Seonam are share close genetic relationship in 21 cultivars and these three cultivars were observed the high frequency of germination and regeneration. Furthermore, the high tissue culture abilities were also observed in the Williams 82 used in reference genome sequencing and the two foreign cultivars. The transformation of pBAtc:tRNA with bar gene was performed by Agrobacterium tumefaciens in the cultivars with high tissue culture ability. Transformation of the bar gene was identified by PCR analysis in Kwangan, Pungwon, Seonam, and Maverick. Our results provide useful information for the breeding of various soybean cultivars by plant biotechnology such as, genome editing.

유전자 가위 기술 등 생명공학 기술을 콩에 적용하여 새로운 품종을 개발하기 위해서는 효율적인 조직배양 기술이 필수적이다. 식물의 유전형은 조직배양 효율에 의존하는 형질전환 기술의 성공 여부를 결정짓는 중요한 요소로 알려져 있다. 본 연구에서는 우리나라 콩 핵심 집단 내 21개 자원들을 선발하여, 외래 품종 2종과 함께 조직배양 효율을 조사하였다. 그 결과, 근연 관계가 높은 Kwangan, Anpyeong, Seonam은 발아율과 재분화 효율이 높았으며, Daepung, Daewon 품종은 발아율과 재분화율 모두 낮게 관찰되었다. 또한 3종의 외래 품종에서는 표준 유전체 해독에 사용된 Williams82와 Jack, Maverick 모두 높은 조직배양 효율을 보였다. 조직배양 효율이 높은 자원들을 대상으로 Agrobacterium법에 의한 형질전환을 수행하여 PCR 및 bar-strip 분석한 결과 Kwangan, Pungwon, Seonam, 그리고 Maverick 품종에서 제초제 저항성 유전자의 삽입을 확인할 수 있었다. 이들 결과를 바탕으로 농업적 가치가 높은 다양한 콩 품종들의 형질전환을 통한 새로운 품종 개발이 가능할 것이다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 차세대농작물 신육종기술개발사업(과제번호: PJ015157032021)과 국립식량과학원 어젠다 사업(과제번호: PJ014954022021)의 지원에 의하여 수행되었습니다. 연구 수행을 위하여 실험적 지원을 해주신 국립식량과학원 작물기초기반과 이옥경, 강현애 선생님과, Maverick, Jack 품종의 종자를 제공해주신 성순기 박사님을 포함한 LG팜한농 관계자분들께 감사드립니다.

References

  1. Blanca, J., C. Esteras, P. Ziarsolo, D. Perez, V.F.N. Pedrosa, C. Collado, R.R.D. Pablos, A. Ballester, C. Roig, J. Canizares and B. Pico. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280. https://doi.org/10.1186/1471-2164-13-280
  2. Cai, Y., L. Chen, X. Liu, C. Guo, S., Sun, C. Wu, B. Jiang, T. Han and W. Hou. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotech. J. 16:176-185. https://doi.org/10.1111/pbi.12758
  3. Cho, S.W., T.S. Kim, S.J. Kwon, S.K. Roy, C.W. Lee, H.S. Kim and S.H. Woo. 2015. Effect of pre-germination by treatment of soaking on germination of soybean. Korean J. Crop Sci. 60(1)123-137 (in Korean). https://doi.org/10.7740/kjcs.2014.60.1.123
  4. Chun, J.B., M. Jin, N. Jeong, C. Cho, M.S. Seo, M.S. Choi, D.Y. Kim, H.B. Sohn and Y.H. Kim. 2019. Genetic identification and phylogenic analysis of new varieties and 149 Korean cultivars using 27 InDel markers selected from dense variation blocks in soybean (Glycine max (L.) Merrill). Korean J. Plant Res. 32(5):519-542 (in Korean).
  5. Dufourmantel, N., G. Tissot, F. Goutorbe, F. Garcon, C. Muhr, S. Jansens, B. Pelissier, G. Peltier and M. Dubald. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol. 58:659-668. https://doi.org/10.1007/s11103-005-7405-3
  6. Eckert, H., B.L. Vallee, B.J. Schweiger, A.J. Kinney, E.B. Cahoon and T. Clemente. 2006. Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of steridonic acid in the seeds of transgenic soybean. Planta 224:1050-1057. https://doi.org/10.1007/s00425-006-0291-3
  7. Flores, T., O. Karpova, X. Su, P. Zeng, K. Bilyeu, D.A. Sleper, H.T. Nguyen and Z.J. Zhang. 2008. Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res. 17:839-850. https://doi.org/10.1007/s11248-008-9167-6
  8. Ge, X.J., Z.H. Chu, Y.J. Lin and S.P. Wang. 2006. A tissue culture system for different germplasms of indica rice. Plant Cell Rep. 25:392-402. https://doi.org/10.1007/s00299-005-0100-7
  9. Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan and G. Venkataraman. 2018. CRISPR for crop improvement: an update review. Front. Plant Sci. 9:985. https://doi.org/10.3389/fpls.2018.00985
  10. Jeon, E.H. and Y.S. Chung. 2003. Development of genetic transformation method of Korean soybean. J. Plant Biotechnol. 36:344-351. https://doi.org/10.5010/JPB.2009.36.4.344
  11. Jeong, N., K.S. Kim, S. Jeong, J.Y. Kim, S.K. Park, J.S. Lee, S.C. Jeong, S.T. Kang, B.K. Ha, D.Y. Kim, N. Kim, J.K. Moon and M.S. Choi. 2019. Korean soybean core collection: genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 14(10): e0224074. https://doi.org/10.1371/journal.pone.0224074
  12. Karthik, S., G. Pavan, V. Krishnan, S. Sathish and M. Manickavasagam. 2019. Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]. Biocatal. Agricult. Biotech. 19:101173. https://doi.org/10.1016/j.bcab.2019.101173
  13. Kim, D.G., V. Kantayos, D.K. Kim, H.G. Park, H.H. Kim, E.S. Rha, S.C. Lee and C.H. Bae. 2016. Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Korean J. Plant Res. 29(1):143-153 (in Korean). https://doi.org/10.7732/kjpr.2016.29.1.143
  14. Kim, H.J., H.S. Cho, J.H. Park, K.J. Kim, D.H. Lee and Y.S. Chung. 2017. Overexpression of a chromatin architecture controlling ATPG7 has positive effect on yield components in transgenic soybean. Plant Breed. Biotech. 5(3):237-242. https://doi.org/10.9787/PBB.2017.5.3.237
  15. Kim, H.S., H.S. Kim, K.H. Kim, Y.J. Oh, S.K. Suh and H.K. Park. 2005. Water absorption and germination ratio of sprout-soybean varieties affected by different planting date. Korean J. Crop Sci. 50(S):132-135 (in Korean).
  16. Kim, J.M., I. Shin, S.K. Park, M.S. Choi, J.D. Lee, B.K. Ha, J. Lee, Y.J. Kang, S.C. Jeong, J.K. Moon and S. Kang. 2021. Soybean cultivar 'Hipro' for tofu and soymilk with high seed protein content and pod shattering resistance. Korean J. Breed. Sci. 53(1):60-68 (in Korean). https://doi.org/10.9787/KJBS.2021.53.1.60
  17. Kim, W.S. and H.B. Krishnan. 2004. Expression of an 11kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotech. J. 2:199-210. https://doi.org/10.1111/j.1467-7652.2004.00063.x
  18. Kim, Y.H., H.M. Park. M.S. Choi, S.I. Sohn, D.B. Shin and J.Y. Lee. 2008. Efficient transformation method of soybean using meristematic tissues of germinating seeds. Korean J. Breed. Sci. 40(3):278-285 (in Korean).
  19. Kita, Y., K. Nishizawa, M. Takahashi, M. Kitayama and M. Ishimoto. 2007. Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep. 26:439-447. https://doi.org/10.1007/s00299-006-0245-z
  20. Li, S., Y. Cong, Y. Liu, T. Wang, Q. Shuai, N. Chen., J. Gai and Y. Li. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Sci. 8:246. https://doi.org/10.3389/fpls.2017.00246
  21. Melo, B.P., I.T. Lourenco-Tessutti, C.V. Morgante, N.C. Santos, L.B. Pinheiro, C.B.J. Lins, M.C.M. Silva, L.L.P. Macedo, E.P.B. Fontes and M.F. Grossi-de-Sa. 2020. Soybean embryonic axis transformation: combining biolistic and Agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Sci. 11:1228. https://doi.org/10.3389/fpls.2020.01228
  22. Ono, Y., Y. Takahata and N. Kaizuma. 1994. Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica Napus L). Plant Cell Rep. 14:13-17. https://doi.org/10.1007/BF00233290
  23. Paz, M.M., J.C. Martinez, A.B. Kalvig, T.M. Fonger and K. Wang. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25(3):206-213. https://doi.org/10.1007/s00299-005-0048-7
  24. Raza, G., M.B. Singh and P.L. Bhalla. 2017. In vitro plant regeneration from commercial cultivars of soybean. BioMed Res. Int. 2017:7379693. https://doi.org/10.1155/2017/7379693
  25. Sato, S., A. Xing, X. Ye, B. Schweiger, A. Kinney, G. Graef and T. Clemente. 2004. Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop. Sci. 44:646-652. https://doi.org/10.2135/cropsci2004.6460
  26. Seo, M.S., C. Cho, M.S. Choi, J.B. Chun, M. Jin and D.Y. Kim. 2020. Status of molecular biotechnology research based on tissue culture of soybean. Korean J. Plant Res. 33(5):536-549 (in Korean). https://doi.org/10.7732/KJPR.2020.33.5.536
  27. Singh, R.J. and T. Hymowitz. 1999. Soybean genetic resources and crop improvement. Genome 42:605-616. https://doi.org/10.1139/g99-039
  28. Vagadia, B.H., S.K. Vanga and V. Raghavan. 2017. Inactivation methods of soybean trypsin inhibitor-a review. Trends Food Sci. Technol. 64:115-125. https://doi.org/10.1016/j.tifs.2017.02.003
  29. Yang, C., T.J. Zhao, D.Y. Yu and J.Y. Gai. 2011. Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr). Mol. Cells 32:337-342. https://doi.org/10.1007/s10059-011-0063-1
  30. Zeng, P., D.A. Vadnais, Z. Zhang and J.C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22:478-482. https://doi.org/10.1007/s00299-003-0712-8
  31. Zhang, W. and R. Wu. 1998. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76:835-840. https://doi.org/10.1007/BF00273668
  32. Zhao, Q., Y. Du, H. Wang, H.J. Rogers, C. Yu, W. Liu, M. Zhao and F. Xie. 2019. 5-azacytiding promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Plant Physiol. Biochem. 141:40-50. https://doi.org/10.1016/j.plaphy.2019.05.014