DOI QR코드

DOI QR Code

RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching

  • 김형주 (경북대학교 전자공학부) ;
  • 김봉환 (대구가톨릭대학교 전자전기공학부) ;
  • 이동인 (영남대학교 정보통신공학과) ;
  • 이봉희 (포항대학교제철산업과) ;
  • 조찬섭 (경북대학교 전자공학부)
  • Kim, Hyeong Ju (School of Electronics Engineering, Kyungpook National University) ;
  • Kim, Bonghwan (School of Electronic and Electrical Engineering, Daegu Catholic University) ;
  • Lee, Dongin (Department of Information and Communication Engineering, Yeungnam University) ;
  • Lee, Bong-Hee (Department of Steel Industry, Pohang University) ;
  • Cho, Chanseob (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2021.07.13
  • 심사 : 2021.07.30
  • 발행 : 2021.07.31

초록

In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

키워드

과제정보

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2019R1F1A1062538). 이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R111A3A04037802). 이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A3061814).

참고문헌

  1. A. T. Young, "Rayleigh scattering", Appl. Opt., Vol. 20, No. 4, pp. 533-535, 1981. https://doi.org/10.1364/AO.20.000533
  2. D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover Publications, New York, 1989.
  3. E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach, Wiley, Chichester, 2019.
  4. H. Cho, B. Lee, G. L. Liu, A. Agarwalc, and L. P. Lee, "Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration", Lab on a Chip, Vol. 9, No. 23, pp. 3360-3363, 2009. https://doi.org/10.1039/b912076a
  5. R. Haldavnekar, K. Venkatakrishnan, and B. Tan, "Next generation SERS-atomic scale platform for molecular level detection", Applied Materials Today, Vol. 18, pp. 100529(1)-100529(18), 2020. https://doi.org/10.1016/j.apmt.2019.100529
  6. R. Moldovan, B. C. Iacob, C. Farcau, E. Bodoki, and R. Oprean, "Strategies for SERS detection of organochlorine pesticides", Nanomaterials, Vol. 11, No. 2, p. 304, 2021. https://doi.org/10.3390/nano11020304
  7. K. Xu, R. Zhou, K. Takei, and M. Hong, "Toward flexible surface-enhanced raman scattering (SERS) sensors for point-of-care diagnostics", Adv. Sci., Vol. 6, No. 16, pp. 1900925(1)-1900925(23), 2019.
  8. B. Yang, S. Jin, S. Guo, Y. Park, L. Chen, B. Zhao, and Y. M. Jung, "Recent development of SERS technology: semiconductor-based study", ACS Omega, Vol. 4, No. 23, pp. 20101-20108, 2019. https://doi.org/10.1021/acsomega.9b03154
  9. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, "Surface-enhanced Raman Spectroscopy", Anal. Chem., Vol. 77, No. 17, pp. 338-346, 2005.
  10. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra from electrode surfaces", J. Chem. Soc., Chem. Commun., Vol. 3, pp.80-81, 1973.
  11. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P.Van Duyn, "SERS: materials, applications, and the future", Materials today, Vol. 15, No. 1-2, pp. 16-25, 2012. https://doi.org/10.1016/S1369-7021(12)70017-2
  12. L. Guerrini and D. Graham, "Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications", Chem. Soc. Rev., Vol. 41, No. 7, pp. 7085-7107, 2012. https://doi.org/10.1039/c2cs35118h
  13. Y. Fu and N. K. Ann Bryan, "Fabrication and characterization of slanted nanopillars array", Journal of Vacuum Science and Technology B, Vol. 23, No. 3, pp. 984-989, 2005. https://doi.org/10.1116/1.1926291
  14. Q. Yu, S. Braswell, B. Christin, J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, "Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays", Nanotechnology, Vol. 21, No. 35, pp. 355301(1)-355301(9), 2010. https://doi.org/10.1088/0957-4484/21/35/355301
  15. U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, "Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing", Biosensors and Bioelectronics, Vol. 26, No. 5, pp. 1987-1992, 2011. https://doi.org/10.1016/j.bios.2010.08.069
  16. S. K. Srivastava, D. Kumar, M. Sharma, R. Kumar, and P. K. Singh, "Silver catalyzed nano-texturing of silicon surfaces for solar cell applications", Solar Energy Materials and Solar Cells, Vol. 100, pp. 33-38, 2012. https://doi.org/10.1016/j.solmat.2011.05.003
  17. Y. Su, G. Zhao, Z. Wu, Y. Yang, W, Li, and Y. Jiang, "Optical properties of black silicon prepared by wet etching", Journal of Materials Science: Materials in Electronics, Vol. 23, No. 8, pp. 1558-1561, 2012. https://doi.org/10.1007/s10854-012-0628-6
  18. H. V. Jansen, M. J. de Boer, K. Ma, M. Girones, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, "Black silicon method XI: Oxygen pulses in SF6 plasma", J. Micromech. Microeng, Vol. 20, No. 7, pp. 075027(1)-075027(12), 2010. https://doi.org/10.1088/0960-1317/20/7/075027
  19. H. Jansen, M. de Boer, J. Burger, R. Legtenberg, and M. Elwenspoek, "The black silicon method II: The effect of mask material and loading on the reactive ion etching of deep silicon trenches", Microelectronic Engineering, Vol. 27, No. 1-4, pp. 475-480, 1995. https://doi.org/10.1016/0167-9317(94)00149-O
  20. H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, "The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control", J. Micromech. Microeng, Vol. 5, No. 2, pp. 115-120, 1995. https://doi.org/10.1088/0960-1317/5/2/015
  21. J. Lv, T. Zhang, P. Zhang, Y. Zhao, and S. Li, "Review Application of Nanostructured Black Silicon", Nanoscale Research Letters, Vol. 13, No. 1, pp.1-10, 2018. https://doi.org/10.1186/s11671-017-2411-3
  22. I. Talian, K. B. Mogensen, A. Orinak, D. Kaniansky, and J. Hubner, "Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces", J. Raman Spectrosc., Vol. 40, No. 8, pp. 982-986, 2009. https://doi.org/10.1002/jrs.2213
  23. H. J. Kim, B. Kim, D. Lee, B. H. Lee, and C. Cho, "Improvement of surface-enhanced raman spectroscopy response characteristics of nanoporous ag metal thin film with surface texture structures", J. Sens. Sci. Tech., Vol. 29, No. 4, pp.255-260, 2020. https://doi.org/10.46670/JSST.2020.29.4.255