과제정보
본 연구는 대한민국 교육부의 재원으로 BK21 4단계 사업(4199990113966)과 정부의 재원으로 한국연구재단의 지원(No. 2020R1I1A3A04037962), 그리고산업통상자원부 '산업전문인력 역량강화사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원(2021년 첨단센서 전문인력 양성사업, 과제번호 : P0001018)을 받아 수행된 연구임.
참고문헌
- M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors", Nature, Vol. 521, pp. 61-64, 2015. https://doi.org/10.1038/nature14441
- G. Kim, K. Kim, S. Choi, H. J. Jang, and S. O. Jung, "Area- and energy-efficient STDP learning algorithm for spiking neural network SoC", IEEE Access, Vol. 8, pp. 216922-216932, 2020. https://doi.org/10.1109/ACCESS.2020.3041946
- G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy, "A 4096-Neuron 1M-Synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and sparse weights in 10-nm FinFET CMOS", IEEE J. Solid-State Circuits., Vol. 54, No. 4, pp. 992-1002, 2019. https://doi.org/10.1109/jssc.2018.2884901
- Y. S. Yang and Y. Kim, "Recent trend of neuromorphic computing hardware: Intel's neuromorphic system perspective", 2020 Int. SoC Des. Conf. (ISOCC), pp. 218-219, Yeosu, South Korea, 2020.
- M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B. G. Lee, "Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron", IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2410-2419, 2015. https://doi.org/10.1109/TIE.2014.2356439
- J. Misra, I. Saha, "Artificial neural networks in hardware: A survey of two decades of progress", Neurocomputing, Vol. 74, No. 1-3, pp. 239-255, 2010. https://doi.org/10.1016/j.neucom.2010.03.021
- M. Kimura, R. Sumida, A. Kurasaki, T. Imai, Y. Takishita, and Y. Nakashima, "Amorphous metal oxide semiconductor thin film, analog memristor, and autonomous local learning for neuromorphic systems", Sci. Rep., Vol. 11, No.1, pp. 1-7, 2021. https://doi.org/10.1038/s41598-020-79139-8
- J. J. Lee, J. Park, M. W. Kwon, S. Hwang, H. Kim, and B. G. Park, "Integrated neuron circuit for implementing neuromorphic system with synaptic device", Solid State Electron., Vol. 140, pp. 34-40, 2018. https://doi.org/10.1016/j.sse.2017.10.012
- S. H. Lee, H. L. Park, M. H. Kim, M. H. Kim, B. G. Park, and S. D. Lee, "Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments", ACS Appl. Mater. Interfaces., Vol. 12, No. 46, pp. 51719-51728, 2020 https://doi.org/10.1021/acsami.0c15519
- H. Kim, S. Cho, M. C. Sun, J. Park, S. Hwang, and B. G. Park, "Simulation Study on Silicon-Based Floating Body Synaptic Transistor with Short- and Long-Term Memory Functions and Its Spike Timing-Dependent Plasticity", J. Semicond. Technol. Sci., Vol. 16, No. 5, pp. 657-663, 2016. https://doi.org/10.5573/JSTS.2016.16.5.657
- S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Y. Chen, H. Chen, S. Yu, and J. Kim, "SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations", Nat. Mater., Vol. 17, No. 4, pp. 335-340, 2018. https://doi.org/10.1038/s41563-017-0001-5
- Y. Sun, C. Song, J. Yin, X. Chen, Q. Wan, F. Zeng, and F. Pan, "Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching", ACS Appl. Mater. Interfaces, Vol. 9, No. 39, pp. 34064-34070. 2017. https://doi.org/10.1021/acsami.7b09710
- F. Gul, "Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array", Results Phys., Vol. 12, pp. 1091-1096, 2019. https://doi.org/10.1016/j.rinp.2018.12.092
- L. Shi, G. Zheng, B. Tian, B. Dkhil, and C. Duan, "Research progress on solutions to the sneak path issue in memristor crossbar arrays", Nanoscale Adv., Vol. 2, No. 5, pp. 1811-1827, 2020. https://doi.org/10.1039/d0na00100g
- Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with nonlinear dopant drift", Radioengeering, Vol. 18, No. 2, 2009.
- D. Batas and H. Fiedler, "A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling", IEEE Trans. Nanotechno., Vol. 10, No. 2, pp. 250-255, 2011. https://doi.org/10.1109/TNANO.2009.2038051
- M. J. Sharifi and Y. M. Banadaki, "General spice models for memristor and application to circuit simulation of memristor-based synapses and memory cells", J. Circuits Syst. Comput., Vol. 19, No. 2, pp. 407-424, 2010. https://doi.org/10.1142/S0218126610006141
- A. Rak, and G. Cserey, "Macromodeling of the memristor in SPICE", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 29, No. 4, pp.632-636, 2010. https://doi.org/10.1109/TCAD.2010.2042900
- H. Abdalla and M. D. Pickett, "SPICE modeling of memristors", 2011 IEEE Int. Symp. Circuits and Syst. (ISCAS), pp. 1832-1835, Rio de Janeiro, Brazil, 2011.
- A. F. Adzmi, A. Nasrudin, W. F. H. Abdullah, and S. H. Herman, "Memristor Spice model for designing analog circuit", 2012 IEEE Stud. Conf. Res. Dev. (SCOReD), pp. 78-83, Pulau Pinang, Malaysia, 2012.
- C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time", The 2013 Int. Jt. Conf. Neural Netw. (IJCNN), pp. 1-7, Dallas, USA, 2013.
- D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, "The missing memristor found", Nature, Vol. 453, No. 7191, pp. 80-83, 2008. https://doi.org/10.1038/nature06932