DOI QR코드

DOI QR Code

Effect of Electron Beam Irradiation on the Development and Reproduction of Phthorimaea operculella (Lepidoptera: Gelechiidae)

전자빔 조사가 감자뿔나방의 발육과 생식에 미치는 영향

  • Cho, Sun-Ran (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Ahn, Hyeonmo (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Eom, Taeil (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kyung, Yejin (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Lee, Seung-Ju (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kim, Hyun Kyung (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Koo, Hyun-Na (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kim, Gil-Hah (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University)
  • 조선란 (충북대학교 농업생명환경대학 식물의학과) ;
  • 안현모 (충북대학교 농업생명환경대학 식물의학과) ;
  • 엄태일 (충북대학교 농업생명환경대학 식물의학과) ;
  • 경예진 (충북대학교 농업생명환경대학 식물의학과) ;
  • 이승주 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김현경 (충북대학교 농업생명환경대학 식물의학과) ;
  • 구현나 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2021.03.23
  • Accepted : 2021.05.27
  • Published : 2021.06.01

Abstract

The potato tuber moth, Phthorimaea operculella (Zeller) has been known as a quarantine pest of potato. This study investigated inhibition doses of electron beam irradiation (EBM) by comparing their effects on the development and reproduction and DNA damage of the insect pest. Eggs (0-12 h old), larvae (3rd and 5th instar), pupae (less than 1 d old after pupation) and adults (less than 1 d old after emergence) were irradiated with increasing doses of EBM. The EBM with 150 Gy could not completely prevent the hatchability of eggs and pupation of the hatched larvae. The hatchability from the irradiated eggs were 19.3%. However, adult emergence from the irradiated eggs were completely inhibited. When 3rd and 5th instar larvae were irradiated at 100 Gy, the adult emergence from the irradiated larvae and the fecundity of the adults were completely inhibited. When pupae and adults were irradiated at 300 Gy and 400 Gy, respectively, the hatchability of the F1 eggs was completely inhibited. The alkaline comet assay on the level of DNA damage by EBM in P. operculella adults indicates that the EBM increased DNA damage level in a dose-dependent manner, and the damage was repaired in a time-dependent manner. These results may recommend EBM of 150 Gy as a phytosanitary treatment for P. operculella. However further confirmative study is required for the practical application of this EBM dose for P. operculella disinfestation.

감자뿔나방은 감자에 대한 검역 해충으로 알려져 있다. 본 연구는 전자빔 조사가 감자뿔나방의 발육 및 생식, 그리고 DNA 손상에 미치는 영향을 비교하고 억제선량을 조사하였다. 전자빔을 알(0-12시간 이내), 유충(3령과 5령), 번데기(용화 1일 이내), 그리고 성충(우화 1일 이내)에 선량을 증가시키면서 조사하였다. 전자빔 150 Gy는 알의 부화와 부화된 유충의 용화를 완전히 억제하였다. 조사된 알의 부화율은 19.3%였지만, 성충 우화는 완전히 억제되었다. 3령과 5령 유충에 100 Gy를 조사하였을 때, 성충의 우화와 생식은 완전히 억제되었다. 번데기와 성충에 각각 300 Gy와 400 Gy를 조사하였을 때, F1세대의 부화율이 억제되었다. 전자빔에 대한 감자뿔나방 성충의 DNA 손상 정도를 alkaline comet assay으로 분석하였으며, 전자빔 조사가 선량 의존적으로 감자뿔나방의 DNA 손상 정도를 증가시켰다. 이러한 결과는 감자뿔나방에 대한 식물 검역 처리법으로 전자빔 150 Gy를 권장할 수 있다. 하지만, 감자뿔나방을 방제하기 위해 전자빔을 현장에 적용하기 위해서는 추가적인 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

이 논문(연구실적물)은 2021학년도 충북대학교 연구년제 지원에 의하여 연구되었음.

References

  1. Ayvaz, A., Tuncbilek, A.S., 2006. Effect of gamma radiation on life stages of the Mediterranean flour moth, Ephestica Kuehniella zeller (Leippdoptera: Pyralidae). J. Pest. Sci. 79, 215-222. https://doi.org/10.1007/s10340-006-0137-6
  2. Chatterjee, S., Variyar, P.S., Sharma, A., 2012. Post- irradiation identification of papaya (Carica papaya L.) fruit. Radiat. Phys. Chem. 81, 352-353. https://doi.org/10.1016/j.radphyschem.2011.11.045
  3. Cho, S.R., Koo, H.N., Shin, S., Kim, H.K., Park, J.H., Yoon, Y.S., Kim, G.H., 2019. Gamma-ray irradiation control of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) and Trialeurodes vaporariorum in the exportation of fresh strawberries. J. Econ. Entomol. 112, 1611-1617. https://doi.org/10.1093/jee/toz083
  4. Cho, S.R., Shin, S., Ahn, H., Koo, H.N., Kim, Y., Kim, G.H., 2020a. Control of whitefly (Hemiptera: Aleyrodidae), Trialeurodes vaporariorum, with electron beam and X-ray radiation of fresh strawberries for export. Insects. 11, 337. https://doi.org/10.3390/insects11060337
  5. Cho, S.W., Kim, H.K., Kim, B.S., Yang, J.O., Kim, G.H., 2020b. Combinatory effect of ethyl formate and Phosphine fumigation on Pseudococcus longispinus and P. orchidicola (Hemiptera: Pseudococcidae) mortality and phytotoxicity to 13 foliage nursery plants. J. Asia-Pacific. Entomol. 23, 152-158. https://doi.org/10.1016/j.aspen.2019.11.005
  6. EPPO website, Phthorimaea operculella. https://www.eppo.int/MEETINGS/2015_meetings/wp_ppp. htm (access on 27 May, 2015)
  7. Etemadinasab, H., Zahedi, M., Ramin, A.A., Kadivar, M.K., Shirmardi, S.P., 2020. Effects of electron beam irradiation on physicochemical, nutritional properties and storage life of five potato cultivars. Radiat. Phys. Chem. 177, 109093. https://doi.org/10.1016/j.radphyschem.2020.109093
  8. Fei, P., El-Deiry, W.S., 2003. P53 and radiation responses. Oncogene 22, 5774-5783. https://doi.org/10.1038/sj.onc.1206677
  9. Fenemore, P.G., 1988. Host-plant location and selection by adult moth, Phthorimaea operculella Zell. (Lepidoptera: Gelechiidae) a review. J. Insect Physiol. 3, 175-177. https://doi.org/10.1016/0022-1910(88)90047-9
  10. Follett, P.A., 2004. Irradiation to control insects in fruits and vegetables for export from Hawaii. Radiat. Phys. Chem. 71: 163-166. https://doi.org/10.1016/j.radphyschem.2004.03.074
  11. Follett, P.A., 2008. Effect of irradiation on Mexican leafroller (Lepidoptera: Tortricidae) development and reproduction. J. Econ. Entomol. 101, 710-715. https://doi.org/10.1603/0022-0493(2008)101[710:EOIOML]2.0.CO;2
  12. Follett, P.A., Neven, L.G., 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51, 359-385. https://doi.org/10.1146/annurev.ento.49.061802.123314
  13. Follett, P.A., Yang, M.M., Lu, K.H., Chen, T.W., 2007. Irradiation for postharvest control of quarantine insects. Formosan Entomol. 27, 1-15.
  14. Haiba, I.M., 1994. Disinfestation of different varieties of potato naturally or artificially infested by the potato tuber moth, P. operculella Zeller in the storage. J. Arb. Nucl. Sci. Appl. 27, 31-43.
  15. Haiba, I.M., 2000. Integration of ash and gamma-irradiation for controlling the potato tuber moth, P. Operculella Zeller in storage. Bull. Ent. Soc. Egypt, Econ. Ser. 27, 78-107.
  16. Haiba, I.M., Abd-El Aziz, M.F., 2008. Biochemical effects of potato irradiation on potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera Gelechiidae). J. biolog. Sci., 1, 1-11.
  17. Hallman, G.J., 2004. Ionizing irradiation quarantine treatment against Oriental fruit moth (Lepidopter: Tortricidae) in ambient and hypoxic atmosphere. J. Econ. Entomol. 97, 824-827. https://doi.org/10.1603/0022-0493(2004)097[0824:IIQTAO]2.0.CO;2
  18. Hallman, G.J., 2011. Phytosanitary applications of irradiation. Compr. Rev. Food Sci. Food Saf. 10, 142-151. https://doi.org/10.1111/j.1541-4337.2010.00144.x
  19. Hallman, G.J., Hellmich, R.L., 2009. Ionizing radiation as a phytosanitary treatment against European corn borer (Lepidoptera: Crambidae) in ambient, low oxygen, and cold conditions. J. Econ. Entomol. 102, 64-68. https://doi.org/10.1603/029.102.0110
  20. Hanafi, A., 1999. Integrated pest management of potato tuber moth in field and storage. Potato Res. 42, 373-380. https://doi.org/10.1007/BF02357863
  21. Hasan, M.M., Todoriki, S., Miyanoshita, A., Immamura, T., 2008. Detection of gamma radiation-induced DNA damage in maize weevil, Sitophilus zeamais Mostchulsky (Coleoptera: Curculionidae) assessed using the comet assay. Int. J. Radiat. Biol. 84, 815-820. https://doi.org/10.1080/09553000802389637
  22. Heather, N.W., Hallman, G.J., 2008. Pest management and phytosanitary trade barriers. CABI International, Wallingford, Oxfordshire, UK. pp. 132-152.
  23. Imamura, T., Todorikia, S., Sotaa, N., Nakakitaa, H., Ikenagaa, H., Hayashib, T., 2004. Effect of "soft-electron" (low-energy electron) treatment on three stored-product insect pests. J. Stored Prod. Res. 40, 169-177. https://doi.org/10.1016/S0022-474X(02)00095-4
  24. Kim, B., Song, J.E., Par, J.S., Park, Y., Shin, E.M., Yang, J., 2019. Insecticidal effects of fumigants (EF, MB, and PH3) towards Phosphine-Susceptible and -Resistant Sitophilus oryzae (Coleoptera: Curculionidae). Insects. 10, 327. doi: 10.3390/insects10100327
  25. Kim, J., Chung, S.O., Jang, M., Jang, S.A., Park, C.G., 2015. Developmental inhibition and DNA damage of Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) by gamma radiation. Int. J. Radiat. Biol. 91, 827-832. https://doi.org/10.3109/09553002.2015.1068464
  26. Koo, H.N., Yoon, S.H., Shin, Y.H., Yoon, C., Woo, J.S., Kim, G.H., 2011. Effect of electron beam irradiation on developmental stages of Plutella xylostella (Lepidoptera: Plutellidae). J. Asia-Pacific. Entomol. 14, 243-247. https://doi.org/10.1016/j.aspen.2011.03.001
  27. Koo, H.N., Yun, S.H., Kim, H.K., Kim, G.H., 2018. Elucidation of molecular expression associated with abnormal development and sterility caused by electron beam irradiation in Spodoptera litura (F.) (Lepidoptera: Noctuidae). Int. J. Radiat. Biol. 95,1-8. https://doi.org/10.1080/09553002.2018.1547442
  28. Koo, H.N., Yun, S.H., Yoon, C., Kim, G.H., 2012. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpetine leafminer, Liriomyza trifolii (Burgess). Radiat. Phys. Chem. 81, 86-62. https://doi.org/10.1016/j.radphyschem.2011.09.008
  29. Kwon, J.H., 2010. Safety and understanding of irradiated food. Korea Safety Research Institute, Seoul, pp. 9-29.
  30. Moon, S.R., Son, B.K., Yang, J.O., Woo, J.S., Yoon, C.M., Kim, G.H., 2010. Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49, 129-137. https://doi.org/10.5656/KSAE.2010.49.2.129
  31. Nguyen, T.T., Collins, p.J., Duong, T.M, Schlipalius, D.I., Ebert, P.R., 2016. Genetic conservation of phosphine resistance in the rice weevil Sitophilus oryzae (L.). J. Hered. 107, 228-237. https://doi.org/10.1093/jhered/esw001
  32. Osouli, S., Ziale, F., Nejad, K.H.I., Moghaddam, M., 2013. Application of gamma irradiation on egg, active and quiescence stages of Tetranycus urticae Koch as a quarantine tretment of cut flower. Rad. Phys. Chem. 90, 111-119. https://doi.org/10.1016/j.radphyschem.2013.04.033
  33. Park, J.S., Jeong, S.Y., Kim, I., 2015. Confirmatory test of gamma irradiation against the larvae and pupae of Helicoverpa arssulta (Lepidoptera: Notuidae) in paprika. Int. J. Indust. Entomol. 31, 103-106. https://doi.org/10.7852/IJIE.2015.31.2.103
  34. Parker, A., Mehta, K., 2007. Sterile insect technique: A model for dose optimization for improved sterile insect quality. Fla. Entomol. 90, 88-95. https://doi.org/10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2
  35. Rananavare, H.D., Harwalkar, M.R., Rahalkar, G.W., 1991. Influence of modifying factors on induction of sterility and mating ability of potato tuberworm, Phthorimaea operculella (Zeller). J. Nucl. Agric. Biol. 20, 199-205.
  36. Robinson, A.S., 2002. Mutations and their use in insect control. Mutat. Res. 511, 113-132. https://doi.org/10.1016/S1383-5742(02)00006-6
  37. Saour, G., Makee, H., Al-Oudat, M., 1999. Susceptibility of potato plants grown from tubers irradiated with stimulation doses of gamma irradiation to potato tuber moth, Phthorimaea operculella Zeller (Lep., Gelechiidae). J. Appl. Entomol., 123, 159-164. https://doi.org/10.1046/j.1439-0418.1999.00335.x
  38. SAS Institute, 2016. SAS user's guide: Statistics, version 9.4 ed. SAS Institute, Cary, NC.
  39. Seaton, K.A., Joyce, D.C., 1992. Gamma irradiation for insect deinfestation damages native Australian cut flowers. Sci. Hortic. 52, 343-355. https://doi.org/10.1016/0304-4238(92)90035-B
  40. Shetty, V., Shetty, N.J., Ananthanarayana, S.R., Jha, S.K., Chaubey, R.C., 2017. Evaluation of gamma radiation-induced DNA damage in Aedes aegypti using the comet assay. Toxicol. Ind. Health. 33, 930-937. https://doi.org/10.1177/0748233717733599
  41. Tanabe, K., Dohino, T., 1995. Responses of 17 species of cut flowers to electron beam irradiation. Res. Bull. Pl. Prot. Japan. 31, 89-94.
  42. Todoriki, S., Hasan, M., Miyanoshita, A., Immamura, T., Hayashi, T., 2006. Assessment of electron beam-induced DNA damage in larvae of chestnut weevil, Curculio sikkimensis (Heller) (Coleoptera: Curculionidae) using comet assy. Radiat. Phys. Chem. 75, 292-296. https://doi.org/10.1016/j.radphyschem.2005.08.001
  43. USDA-APHIS (U.S. Department of Agriculture-Animal and Plant Health Inspection Service), 2006. Treatments for fruits and vegetables. Rules and Regulations. Fed. Regist. 71, 4451-4464.
  44. Yun, S.H., Kim, M., Kim, H., Lee, S.W., Yoo, D.H., Kim, H.K., Koo, H.N., Kim, G.H., 2014a. Doses of electron beam and X-ray irradiation for inhibition of development and reproduction in four insect pests. Korean J. Appl. Entomol. 53, 391-398. https://doi.org/10.5656/KSAE.2014.10.0.054
  45. Yun, S.H., Lee, S.W., Koo, H.N., Kim, G.H., 2014b. Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae). Radiat. Phys. Chem. 96, 44-49. https://doi.org/10.1016/j.radphyschem.2013.08.008