DOI QR코드

DOI QR Code

Experimental Investigation on Finasteride Microparticles Formation via Gas Antisolvent Process

  • Najafi, Mohammad (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Esfandiari, Nadia (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Honarvar, Bizhan (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Aboosadi, Zahra Arab (Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University)
  • Received : 2021.02.28
  • Accepted : 2021.05.12
  • Published : 2021.08.01

Abstract

Micro and nanoparticles of Finasteride were prepared by gas-antisolvent method. The influence of process parameters such as pressure (100, 130 and 160 bar), temperature (308, 318 and 328 K) and solute concentrations (10, 25 and 40 mg/ml) on mean particle size was studied by Box-Behnken design. As ANOVA results indicated, the highest influence in production of smaller particles was attributed to the pressure. Optimum condition leading to the smallest particle size was as follows: initial solute concentration, 10 mg/ml; temperature, 308 K and pressure, 160 bar. The particles were evaluated with FTIR, SEM, DLS, XRD as well as DSC. The analyses revealed a size decrease in the precipitated Finasteride particles (232.4 nm, on mean) via gas-antisolvent method, as compared to the original particles (55.6 ㎛).

Keywords

References

  1. Nguyen, T. T. L., Anton, N. and Vandamme, T. F., "Oral Pellets Loaded with Nanoemulsions," Nanostructures for Oral Medicine, 203-230(2017).
  2. Ku, M. S. and Dulin, W., "A Biopharmaceutical Classification-based Right-First-Time Formulation Approach to Reduce Human Pharmacokinetic Variability and Project Cycle Time from FirstIn-Human to Clinical Proof-of-Concept," Pharm.Dev. Tech., 17(3), 285-302(2012). https://doi.org/10.3109/10837450.2010.535826
  3. Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., Cho, J. M., Yun, G. and Lee, J., "Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability," Asian J. Pharm. Sci., 9(6), 304-316(2014). https://doi.org/10.1016/j.ajps.2014.05.005
  4. Krishnaiah, Y. S., "Pharmaceutical Technologies for Enhancing Oral Bioavailability of Poorly Soluble Drugs," J. Bioequiv. Availab., 2(2), 28-36(2010). https://doi.org/10.4172/jbb.1000027
  5. Sharma, D., Soni, M., Kumar, S. and Gupta, G., "Solubility Enhancement-eminent Role in Poorly Soluble Drugs," Res. J. Pharm. and Technol., 2(2), 220-224(2009).
  6. Kumar, A., Sahoo, S. K., Padhee, K., Kochar, P., Sathapathy, A. and Pathak, N., "Review on Solubility Enhancement Techniques for Hydrophobic Drugs," Pharmacie Globale, 3(3), 1-7(2011).
  7. Ridhurkar, D. N., Ansari, K. A., Kumar, D., Kaul, N. S., Krishnamurthy, T., Dhawan, S. and Pillai, R., "Inclusion Complex of Aprepitant with Cyclodextrin: Evaluation of Physico-chemical and Pharmacokinetic Properties," Drug Dev. Ind. Pharm., 39(11), 1783-1792(2013). https://doi.org/10.3109/03639045.2012.737331
  8. Liu, J., Zou, M., Piao, H., Liu, Y., Tang, B., Gao, Y., Ma, N. and Cheng, G., "Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus®", Molecules, 20(6), 11345-11356(2015). https://doi.org/10.3390/molecules200611345
  9. Nokhodchi, A., Javadzadeh, Y., Siahi-Shadbad, M. R. and Barzegar-Jalali, M., "The Effect of Type and Concentration of Vehicles on the Dissolution Rate of a Poorly Soluble Drug (indomethacin) from Liquisolid Compacts," J. Pharm. Sci., 8(1), 18-25(2005).
  10. Humberstone, A. J. and Charman, W. N., "Lipid-based Vehicles for the Oral Delivery of Poorly Water Soluble Drugs," Adv. Drug Delivery Reviews, 25(1), 103-128(1997). https://doi.org/10.1016/S0169-409X(96)00494-2
  11. Bolten, D. and Turk, M., "Micronisation of Carbamazepine Through Rapid Expansion of Supercritical Solution (RESS)," J. Supercri. Fluids, 62, 32-40(2012). https://doi.org/10.1016/j.supflu.2011.06.014
  12. Cheng, S. H., Yang, F. C., Yang, Y. H., Hu, C. C. and Chang, W. T., "Measurements and Modeling of the Solubility of Ergosterol in Supercritical Carbon Dioxide," J. Taiwan Ins. Chem. Eng., 44(1), 19-26(2013). https://doi.org/10.1016/j.jtice.2012.09.001
  13. Knez, Z. and Weidner, E., "Particles Formation and Particle Design Using Supercritical Fluids," Curr. Opin. Solid State Mater. Sci., 7(4-5), 353-361(2003). https://doi.org/10.1016/j.cossms.2003.11.002
  14. Hiendrawan, S., Veriansyah, B. and Tjandrawinata, R. R., "Micronization of Fenofibrate by Rapid Expansion of Supercritical Solution," J. Ind. Eng. Chem., 20(1), 54-60(2014). https://doi.org/10.1016/j.jiec.2013.04.027
  15. Fahim, T., Zaidul, I., Bakar, M.A., Salim, U., Awang, M., Sahena, F., Jalal, K., Sharif, K. and Sohrab, M., "Particle Formation and Micronization Using Non-conventional Techniques-review," Chem. Eng. Process. Process Intensification, 86, 47-52(2014). https://doi.org/10.1016/j.cep.2014.10.009
  16. Sodeifian, G. and Sajadian, S. A., "Utilization of Ultrasonicassisted RESOLV (US-RESOLV) with Polymeric Stabilizers for Production of Amiodarone Hydrochloride Nanoparticles: Optimization of the Process Parameters," Chem. Eng. Res. Des., 142, 268-284(2019). https://doi.org/10.1016/j.cherd.2018.12.020
  17. Sodeifian, G., Sajadian, S. A., Ardestani, N. S. and Razmimanesh, F., "Production of Loratadine Drug Nanoparticles Using Ultrasonic-assisted Rapid Expansion of Supercritical Solution Into Aqueous Solution (US-RESSAS)," J. Supercri. Fluids, 147, 241-253(2019). https://doi.org/10.1016/j.supflu.2018.11.007
  18. Esfandiari, N., "Production of Micro and Nano Particles of Pharmaceutical by Supercritical Carbon Dioxide," J. Supercri. Fluids, 100, 129-141(2015). https://doi.org/10.1016/j.supflu.2014.12.028
  19. Jafari, D., Nowee, S. and Noie, S., "A Kinetic Modeling of Particle Formation by Gas Antisolvent Process: Precipitation of Aspirin," J. Dispersion Sci. Technol., 38(5), 677-685(2017). https://doi.org/10.1080/01932691.2016.1188709
  20. Foster, N. R., Kurniawansyah, F., Tandya, A., Delgado, C. and Mammucari, R., "Particle Processing by Dense Gas Antisolvent Precipitation: ARISE Scale-up," Chem. Eng. J., 308, 535-543(2017). https://doi.org/10.1016/j.cej.2016.09.019
  21. Kim, S.-J., Lee, B.-M., Lee, B.-C., Kim, H.-S., Kim, H. and Lee, Y.-W., "Recrystallization of Cyclotetramethylenetetranitramine (HMX) Using Gas Anti-solvent (GAS) Process," J. Supercri. Fluids, 59, 108-116(2011). https://doi.org/10.1016/j.supflu.2011.07.016
  22. Park, S.-J. and Yeo, S.-D., "Recrystallization of Caffeine Using Gas Antisolvent Process," J. Supercri. Fluids, 47(1), 85-92(2008). https://doi.org/10.1016/j.supflu.2008.05.010
  23. Wichianphong, N. and Charoenchaitrakool, M., "Application of Box-Behnken Design for Processing of Mefenamic Acid-paracetamol Cocrystals Using Gas Anti-solvent (GAS) Process," J. CO2 Uti., 26, 212-220(2018). https://doi.org/10.1016/j.jcou.2018.05.011
  24. Kim, S., Lee, S.J., Seo, B., Lee, Y.-W. and Lee, J. M., "Optimal Design of a Gas Antisolvent Recrystallization Process of Cyclotetramethylenetetranitramine (HMX) with Particle Size Distribution Model," Ind. Eng. Chem. Res., 54(44), 11087-11096(2015). https://doi.org/10.1021/acs.iecr.5b00841
  25. Ulker, Z. and Erkey, C., "An Advantageous Technique to Load Drugs Into Aerogels: Gas Antisolvent Crystallization Inside the Pores," J. Supercri. Fluids, 120, 310-319(2017). https://doi.org/10.1016/j.supflu.2016.05.033
  26. Dittanet, P., Phothipanyakun, S. and Charoenchaitrakool, M., "Co-precipitation of Mefenamic Acid-polyvinylpyrrolidone K30 Composites Using Gas Anti-Solvent," J. Taiwan Ins. Chem. Eng., 63, 17-24(2016). https://doi.org/10.1016/j.jtice.2016.03.010
  27. Lorincz, L., Bansaghi, G., Zsemberi, M., de Simon Brezmes, S., Szilagyi, I. M., Madarasz, J., Sohajda, T. and Szekely, E., "Diastereomeric Salt Precipitation Based Resolution of Ibuprofen by Gas Antisolvent Method," J. Supercri. Fluids, 118, 48-53(2016). https://doi.org/10.1016/j.supflu.2016.07.021
  28. Zodge, A., Korosi, M., Madarasz, J., Szilagyi, I. M., Varga, E. and Szekely, E., "Gas Antisolvent Fractionation: A New Approach for the Optical Resolution of 4-chloromandelic Acid," Period. Polytech. Chem. Eng., 63(2), 303-311(2019). https://doi.org/10.3311/ppch.12910
  29. Mihalovits, M., Horvath, A., Lorincz, L., Szekely, E. and Kemeny, S., "Model Building on Selectivity of Gas Antisolvent Fractionation Method Using the Solubility Parameter," Period. Polytech. Chem. Eng., 63(2), 294-302(2019). https://doi.org/10.3311/ppch.12855
  30. Pessoa, A. S., Aguiar, G. P. S., Oliveira, J. V., Bortoluzzi, A. J., Paulino, A. and Lanza, M., "Precipitation of Resveratrol-isoniazid and Resveratrol-nicotinamide Cocrystals by Gas Antisolvent," J. Supercri. Fluids, 145, 93-102(2019). https://doi.org/10.1016/j.supflu.2018.11.014
  31. Gil-Ramirez, A. and Rodriguez-Meizoso, I., "Purification of Natural Products by Selective Precipitation Using Supercritical/Gas Antisolvent Techniques (SAS/GAS)," Sep. Purif. Rev., 1-21(2019).
  32. Almeida, H. M. and Marques, H. M. C., "Physicochemical Characterization of Finasteride: PEG 6000 and Finasteride: Kollidon K25 Solid Dispersions, and Finasteride: β-cyclodextrin Inclusion Complexes," J. Inclusion Phenom. Macrocyclic Chem., 70(3-4), 397-406(2011). https://doi.org/10.1007/s10847-010-9898-x
  33. Ahmed, T. A. and Al-Abd, A. M., "Effect of Finasteride Particle Size Reduction on Its Pharmacokinetic, Tissue Distribution and Cellular Permeation," Drug Del., 25(1), 555-563(2018). https://doi.org/10.1080/10717544.2018.1440446
  34. Yamini, Y., Kalantarian, P., Hojjati, M., Esrafily, A., Moradi, M., Vatanara, A. and Harrian, I., "Solubilities of Flutamide, Dutasteride, and Finasteride as Antiandrogenic Agents, in Supercritical Carbon Dioxide: Measurement and Correlation," J. Chem. Eng. Data, 55(2), 1056-1059(2009). https://doi.org/10.1021/je900520a
  35. Najafi, M., Esfandiari, N., Honarvar, B. and Arab Aboosadi, Z., "Thermodynamic Modeling of the Gas-Antisolvent (GAS) Process for Precipitation of Finasteride," J. Chem. Pet. Eng., 54, 297-309(2020).
  36. Tafreshi, N., Sharifnia, S. and Dehaghi, S. M., "Box-Behnken Experimental Design for Optimization of Ammonia Photocatalytic Degradation by ZnO/Oak Charcoal Composite," Process Saf. Environ. Prot., 106, 203-210(2017). https://doi.org/10.1016/j.psep.2017.01.015
  37. Granato, D. and de Araujo Calado, V. M., "The Use and Importance of Design of Experiments (DOE) in Process Modelling in Food Science and Technology," Math. Statistical Methods Food Sci. Technol., 1, 1-18(2014).
  38. Cui, F., Li, Y., Xu, Z., Xu, H., Sun, K. and Tao, W., "Optimization of the Medium Composition for Production of Mycelial Biomass and Exo-polymer by Grifola Frondosa GF9801 Using Response Surface Methodology," Bioresour. Technol., 97(10), 1209-1216 (2006). https://doi.org/10.1016/j.biortech.2005.05.005
  39. Kim, H., Kim, J., Cho, J. and Hong, J., "Optimization and Characterization of UV-curable Adhesives for Optical Communications by Response Surface Methodology," Polym. Test., 22(8), 899-906 (2003). https://doi.org/10.1016/S0142-9418(03)00038-2
  40. Mondal, M., Ghosh, A., Gayen, K., Halder, G. and Tiwari, O., "Carbon Dioxide Bio-fixation by Chlorella sp. BTA 9031 Towards Biomass and Lipid Production: Optimization Using Central Composite Design Approach," J. CO2 Utilization, 22, 317-329(2017). https://doi.org/10.1016/j.jcou.2017.10.008
  41. Anuar, N., Mohd Adnan, A. F., Saat, N., Aziz, N. and Mat Taha, R., "Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma Malabathricum Fruit," Sc. World J., 2013, 1-10(2013).
  42. Nam, S.-N., Cho, H., Han, J., Her, N. and Yoon, J., "Photocatalytic Degradation of Acesulfame K: Optimization Using the Box-Behnken Design (BBD)," Proc. Saf. Environ. Prot., 113, 10-21(2018). https://doi.org/10.1016/j.psep.2017.09.002
  43. Joglekar, A. and May, A., "Product Excellence Through Design of Experiments," Cereal Foods World, 32(12), 857(1987).
  44. Jafari, D., Yarnezhad, I., Nowee, S. M. and Baghban, S. H. N., "Gas-antisolvent (GAS) Crystallization of Aspirin Using Supercritical Carbon Dioxide: Experimental Study and Characterization," Ind. Eng. Chem. Res., 54(14), 3685-3696(2015). https://doi.org/10.1021/ie5046445
  45. Esfandiari, N. and Ghoreishi, S. M., "Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process," AAPS Pharm. Sci. Tech., 16(6), 1263-1269(2015). https://doi.org/10.1208/s12249-014-0264-y
  46. Esfandiari, N. and Ghoreishi, S. M., "Synthesis of 5-fluorouracil Nanoparticles via Supercritical Gas Antisolvent Process," J. Supercri. Fluids, 84, 205-210(2013). https://doi.org/10.1016/j.supflu.2013.10.008
  47. Esfandiari, N. and Ghoreishi, S. M., "Kinetics Modeling of Ampicillin Nanoparticles Synthesis via Supercritical Gas Antisolvent Process," J. Supercri. Fluids, 81, 119-127(2013). https://doi.org/10.1016/j.supflu.2013.05.018
  48. Chen, K., Zhang, X., Pan, J., Zhang, W. and Yin, W., "Gas Antisolvent Precipitation of Ginkgo Ginkgolides with Supercritical CO2", Powder Technol., 152(1-3), 127-132(2005). https://doi.org/10.1016/j.powtec.2005.01.009
  49. Bakhbakhi, Y., Charpentier, P. A. and Rohani, S., "Experimental study of the GAS Process for Producing Microparticles of Beclomethasone-17, 21-dipropionate Suitable for Pulmonary Delivery," Int. J. Pharm., 309(1-2), 71-80(2006). https://doi.org/10.1016/j.ijpharm.2005.11.008
  50. Fagir, W., Hathout, R. M., Sammour, O. A. and ElShafeey, A. H., "Self-microemulsifying Systems of Finasteride with Enhanced Oral Bioavailability: Multivariate Statistical Evaluation, Characterization, Spray-drying and in vivo Studies in Human Volunteers," Nanomedicine, 10(22), 3373-3389(2015). https://doi.org/10.2217/nnm.15.123
  51. Ahmed, T. A., "Preparation of Finasteride Capsules-loaded Drug Nanoparticles: Formulation, Optimization, in vitro, and Pharmacokinetic Evaluation," Int. J. Nanomedicine, 11, 515(2016). https://doi.org/10.2147/IJN.S98080
  52. Sodeifian, G. and Sajadian, S. A., "Solubility Measurement and Preparation of Nanoparticles of an Anticancer Drug (Letrozole) Using Rapid Expansion of Supercritical Solutions with Solid Cosolvent (RESS-SC)," J. Supercri. Fluids, 133, 239-252(2018). https://doi.org/10.1016/j.supflu.2017.10.015
  53. Paisana, M. C., Mullers, K. C., Wahl, M. A. and Pinto, J. F., "Production and Stabilization of Olanzapine Nanoparticles by Rapid Expansion of Supercritical Solutions (RESS)," J. Supercri. Fluids, 109, 124-133(2016). https://doi.org/10.1016/j.supflu.2015.11.012
  54. Ciou, J. L. and Su, C. S., "Measurement of Solid Solubilities of Diuron in Supercritical Carbon Dioxide and Analysis of Recrystallization by Using the Rapid Expansion of Supercritical Solutions Process," J. Supercri. Fluids, 107, 753-759(2016). https://doi.org/10.1016/j.supflu.2015.08.005
  55. Thakur, R. and Gupta, R. B., "Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC) Process: Formation of Griseofulvin Nanoparticles," Ind. Eng. Chem. Research, 44(19), 7380-7387(2005). https://doi.org/10.1021/ie050417j
  56. Sodeifian, G., Ardestani, N. S., Sajadian, S. A. and Panah, H. S., "Experimental Measurements and Thermodynamic Modeling of Coumarin-7 Solid Solubility in Supercritical Carbon Dioxide: Production of Nanoparticles via RESS Method," Fluid Phase Equilib., 483, 122-143(2019). https://doi.org/10.1016/j.fluid.2018.11.006
  57. Sodeifian, G., Sajadian, S. A. and Daneshyan, S., "Preparation of Aprepitant Nanoparticles (efficient drug for coping with the effects of cancer treatment) by Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC)," J. Supercri. Fluids, 140, 72-84(2018). https://doi.org/10.1016/j.supflu.2018.06.009
  58. Keshavarz, A., Karimi-Sabet, J., Fattahi, A., Golzary, A., RafieeTehrani, M. and Dorkoosh, F. A., "Preparation and Characterization of Raloxifene Nanoparticles Using Rapid Expansion of Supercritical Solution (RESS)," J. Supercri. Fluids, 63, 169-179(2012). https://doi.org/10.1016/j.supflu.2011.12.005
  59. Yildiz, N., Tuna, S., Doker, O. and Calimli, A., "Micronization of Salicylic Acid and Taxol (paclitaxel) by Rapid Expansion of Supercritical Fluids (RESS)," J. Supercri. Fluids, 41(3), 440-451 (2007). https://doi.org/10.1016/j.supflu.2006.12.012
  60. Ameri, A., Sodeifian, G. and Sajadian, S. A., "Lansoprazole Loading of Polymers by Supercritical Carbon Dioxide Impregnation: Impacts of Process Parameters," J. Supercri. Fluids, 104892(2020).
  61. Ardestani, N. S., Sodeifian, G. and Sajadian, S. A., "Preparation of Phthalocyanine Green Nano Pigment Using Supercritical CO2 Gas Antisolvent (GAS): Experimental and Modeling," Heliyon, 6(9), e04947(2020). https://doi.org/10.1016/j.heliyon.2020.e04947