References
- Sun, J. and Wang, Y., "Recent Advances in Catalytic Conversion of Ethanol to Chemicals," ACS Catal., 4, 1078-1090(2014). https://doi.org/10.1021/cs4011343
- Zhang, M. and Yu, Y., "Dehydration of Ethanol to Ethylene," Ind. Eng. Chem. Res., 52, 9505-9514(2013). https://doi.org/10.1021/ie401157c
- Galadima, A. and Muraza, O., "Zeolite Catalysts in Upgrading of Bioethanol to Fuels Range Hydrocarbons: A Review," J. Ind. Eng. Chem., 31, 1-14(2015). https://doi.org/10.1016/j.jiec.2015.07.015
- Kochar, N. K., Merims, R. and Padia, A. S., "Ethylene from Ethanol," Chem. Eng. Prog., 77, 66-70(1981).
- Mortensen, P. M., et al., "A Review of Catalytic Upgrading of Bio-oil to Engine Fuels," Appl. Catal. A: Gen., 407, 1-19(2011). https://doi.org/10.1016/j.apcata.2011.08.046
- Ren, T., et al., "Petrochemicals From Oil, Natural Gas, Coal and Biomass: Production Costs in 2030-2050," Resour., Conserv. Recycl., 53(12), 653-663(2009). https://doi.org/10.1016/j.resconrec.2009.04.016
- Yakovleva, I. S., et al., "Catalytic Dehydration of Bioethanol to Ethylene," Catal. Ind., 8, 152-167(2016). https://doi.org/10.1134/S2070050416020148
- Christiansen, M. A., Mpourmpakis, G. and Vlachos, D. G., "DFTdriven Multi-site Microkinetic Modeling of Ethanol Conversion to Ethylene and Diethyl Ether on γ-Al2O3(1 1 1)," J. Catal., 323, 121-131(2015). https://doi.org/10.1016/j.jcat.2014.12.024
- Kagyrmanova, A. P., et al., "Catalytic Dehydration of Bioethanol to Ethylene: Pilot-scale Studies and Process Simulation," Chem. Eng. J., 176-177, 188-194(2011). https://doi.org/10.1016/j.cej.2011.06.049
- Kang, M., Dewilde, J. F. and Bhan, A., "Kinetics and Mechanism of Alcohol Dehydration on γ-Al2O3: Effects of Carbon Chain Length and Substitution," ACS Catal., 5, 602-612(2015). https://doi.org/10.1021/cs501471r
- Roy, S., et al., "Mechanistic Study of Alcohol Dehydration on γ-Al2O3", ACS Catal., 2, 1846-1853(2012). https://doi.org/10.1021/cs300176d
- Chiang, H. and Bhan, A., "Catalytic Consequences of Hydroxyl Group Location on the Rate and Mechanism of Parallel Dehydration Reactions of Ethanol Over Acidic Zeolites," J. Catal., 271, 251-261(2010). https://doi.org/10.1016/j.jcat.2010.01.021
- Gayubo, A. G., et al., "Kinetic Model for the Transformation of Bioethanol Into Olefins over a HZSM-5 Zeolite Treated with Alkali," Ind. Eng. Chem. Res., 49, 10836-10844(2010). https://doi.org/10.1021/ie100407d
- Phillips, C. B. and Datta, R., "Production of Ethylene from Hydrous Ethanol on H-ZSM-5 Under Mild Conditions," Ind. Eng. Chem. Res., 36, 4466-4475(1997). https://doi.org/10.1021/ie9702542
- Phung, T. K. and Busca, G., "Diethyl Ether Cracking and Ethanol Dehydration: Acid Catalysis and Reaction Paths," Chem. Eng. J., 272, 92-101(2015). https://doi.org/10.1016/j.cej.2015.03.008
- Reyniers, M. F. and Marin, G. B., "Experimental and Theoretical Methods in Kinetic Studies of Heterogeneously Catalyzed Reactions," Annu. Rev. Chem. Biomol. Eng., 5, 563-594(2014). https://doi.org/10.1146/annurev-chembioeng-060713-040032
- DeWilde, J. F., et al., "Kinetics and Mechanism of Ethanol Dehydration on γ-Al2O3: The Critical Role of Dimer Inhibition," ACS Catal., 3, 798-807(2013). https://doi.org/10.1021/cs400051k
- DeWilde, J. F. and Bhan, A., "Kinetics and Site Requirements of Ether Disproportionation on γ-Al2O3", Appl. Catal. A: Gen., 502, 361-369(2015). https://doi.org/10.1016/j.apcata.2015.06.008
- Taarning, E., et al., "Zeolite-catalyzed Biomass Conversion to Fuels and Chemicals," Energy Environ. Sci., 4(3), 793-804(2011). https://doi.org/10.1039/C004518G
- Gayubo, A. G., et al., "Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite," Ind. Eng. Chem. Res., 40, 3467-3474(2001). https://doi.org/10.1021/ie001115e
- Alexopoulos, K., et al., "DFT-based Microkinetic Modeling of Ethanol Dehydration in H-ZSM-5," J. Catal., 339, 173-185(2016). https://doi.org/10.1016/j.jcat.2016.04.020
- Haro, P., Ollero, P. and Trippe, F., "Technoeconomic Assessment of Potential Processes for Bio-ethylene Production," Fuel Process. Technol., 114, 35-48(2013). https://doi.org/10.1016/j.fuproc.2013.03.024
- Becerra, J., Figueredo, M. and Cobo, M., "Thermodynamic and Economic Assessment of the Production of Light Olefins from Bioethanol," J. Environ. Chem. Eng., 5(2), 1554-1564(2017). https://doi.org/10.1016/j.jece.2017.02.035
- Jernberg, J., et al., Ethanol Dehydration to Green Ethylene. 2015, Lund: Lund University.
- Cameron, G., et al., Process Design for the Production of Ethylene from Ethanol. 2012, Philadelphia, PA: University of Pennsylvania.
- Seo, J.-H., et al., "Influence of Binder on Fe-based Extrudate as Fischer-Tropsch Catalysts," Korean Chem. Eng. Res., 49(6), 726-731(2011). https://doi.org/10.9713/kcer.2011.49.6.726
- Jasra, R. V., et al., "Effect of Clay Binder on Sorption and Catalytic Properties of Zeolite Pellets," Ind. Eng. Chem. Res., 42(14), 3263-3272(2003). https://doi.org/10.1021/ie010953l
- Fogler, H. S., Elements of Chemical Reaction Engineering. 1999, New Jersey: Prentice-Hall.
- Boudart, M., "Two-step Catalytic Reactions," AlChE J., 18(3), 465-478(1972). https://doi.org/10.1002/aic.690180303
- Fuller, E. N., Schettler, P. D. and Giddings, J. C., "New Method for Prediction of Binary Gas-phase Diffusion Coefficients," Ind. Eng. Chem., 58(5), 18-27(1966). https://doi.org/10.1021/ie50677a007
- Seider, W. D., et al., Product and Process Design Principles: Synthesis, Analysis and Design. 2008, New York, NY: John Wiley & Sons.
- Sinnott, R. K., Chemical Engineering Design. Vol. 6. 2005, New York, NY: Elsevier. 1056.
- Hall, S., Rules of Thumb for Chemical Engineers. 2012, Oxford, UK: Butterworth-Heinemann.
- Douglas, J. M., Conceptual Design of Chemical Processes. 1988, New York, NY: McGraw-Hill.
- Aguayo, A. T., et al., "Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst," Ind. Eng. Chem. Res., 41, 4216-4224(2002). https://doi.org/10.1021/ie020068i
- Gayubo, A. G., et al., "Kinetic Modelling for the Transformation of Bioethanol Into Olefins on a Hydrothermally Stable Ni-HZSM-5 Catalyst Considering the Deactivation by Coke," Chem. Eng. J., 167, 262-277(2011). https://doi.org/10.1016/j.cej.2010.12.058
- Gayubo, A. G., et al., "Role of Water in the Kinetic Modeling of Methanol Transformation into Hydrocarbons on HZSM-5 Zeolite," Chem. Eng. Commun., 191, 944-967(2004). https://doi.org/10.1080/00986440490275831
- Campesi, M. A., et al., "Combustion of Volatile Organic Compounds on a MnCu Catalyst: A Kinetic Study," Catal. Today, 176(1), 225-228(2011). https://doi.org/10.1016/j.cattod.2011.01.009
- Nowicki, L., Ledakowicz, S. and Bukur, D. B., "Hydrocarbon Selectivity Model for the Slurry Phase Fischer-tropsch Synthesis on Precipitated Iron Catalysts," Chem. Eng. Sci., 56(3), 1175-1180(2001). https://doi.org/10.1016/S0009-2509(00)00337-7
- Todic, B., et al., "Kinetic model of Fischer-Tropsch synthesis in a slurry reactor on Co-Re/Al2O3 catalyst," Ind. Eng. Chem. Res., 52(2), 669-679(2013). https://doi.org/10.1021/ie3028312
- Yang, J., et al., "Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst," Ind. Eng. Chem. Res., 42(21), 5066-5090(2003). https://doi.org/10.1021/ie030135o
- Lim, H. W., et al., "Optimization of Methanol Synthesis Reaction on Cu/ZnO/Al2O3/ZrO2 Catalyst Using Genetic Algorithm: Maximization of the Synergetic Effect by the Optimal CO2 Fraction," Korean J. Chem. Eng., 27(6), 1760-1767(2010). https://doi.org/10.1007/s11814-010-0311-7
- Park, N., et al., "Modeling and Analysis of a Methanol Synthesis Process Using a Mixed Reforming Reactor: Perspective on Methanol Production and CO2 Utilization," Fuel, 129, 163-172 (2014). https://doi.org/10.1016/j.fuel.2014.03.068
- Wang, F., et al., "Coking Behavior of a Submicron MFI Catalyst During Ethanol Dehydration to Ethylene in a Pilot-scale Fixed-bed Reactor," Appl. Catal. A: Gen., 393, 161-170(2011). https://doi.org/10.1016/j.apcata.2010.11.036
- Hong Kong Boilers and Pressure Vessels Authority, Code of Practice for Thermal Oil Heaters. 2008, Hong Kong: Hong Kong Labour Department.
- Couper, J. R., Chemical Process Equipment: Selection and Design. 1990, Amsterdam Boston: Elsevier. 755.
- Beste, A. and Overbury, S. H., "Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces," J. Phys. Chem. C, 119, 2447-2455(2015). https://doi.org/10.1021/jp509686f
- Guo, S., et al., "Simulation of Adsorption, Diffusion, and Permeability of Water and Ethanol in NaA Zeolite Membranes," J. Membrane Sci., 376(1-2), 40-49(2011). https://doi.org/10.1016/j.memsci.2011.03.043