DOI QR코드

DOI QR Code

Fabrication and Evaluation of CdS/ZnS Quantum Dot Based Plastic Scintillator

CdS/ZnS 양자점 기반 플라스틱 섬광체 제작 및 성능평가

  • Received : 2021.03.01
  • Accepted : 2021.05.12
  • Published : 2021.08.01

Abstract

Currently, gamma nuclide analysis is mainly used using inorganic scintillators or semiconductor detectors. These detectors have high resolution but there are less economical, limited in size, and low process ability than plastic scintillators. Therefore, quantum dot-based plastic scintillator was developed using the advantages of the quantum dot nanomaterial and the conventional plastic scintillator. In this study, efficient plastic scintillator was fabricated by adding CdS/ZnS based on the most widely used Cd-based nanomaterial in a polystyrene matrix. In addition, the performance of the commercial plastic scintillator was compared and it was analyzed through radiological measurement experiments. The detection efficiency of fabricated plastic scintillator was higher than commercial plastic scintillator, EJ-200. It is believed that this fabricated plastic scintillator can be used as a radioactivity analyzer in the medical and nuclear facility fields.

현재, 감마 핵종 분석은 주로 무기섬광체 또는 반도체 검출기를 활용하여 여러 분야에 사용되고 있다. 이러한 검출기는 분해능이 좋지만 크기가 제한적이며, 가공성이 낮고 경제성이 플라스틱 섬광체보다 낮다. 따라서, 나노물질인 양자점과 플라스틱섬광체의 장점을 이용하여 양자점 나노물질 기반 플라스틱 섬광체를 개발하였다. 가장 많이 활용되고 있는 Cd계열 물질인 CdS/ZnS 양자점을 플라스틱 매트릭스에 교반하여 제작하였으며, 이를 60Co핵종 대상 계측 실험을 하여 상용플라스틱 섬광체의 성능과 비교 분석하였다. 상용플라스틱 섬광체 대비 CdS/ZnS 양자점 기반 플라스틱 섬광체가 20~30% 높은 효율을 보였다. 이는 의료분야뿐만 아니라 원자력 해체분야에서도 방사능 분석기로 활용 가능할 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 원자력연구개발사업(No. 2017M2A8A5015143) 재원으로 한국연구재단의 지원을 받아 수행한 연구입니다.

References

  1. Hong, S. B., Seo, B. K., Joe, D. G., Jeong, K. H. and Moon, J. K., "A Study on the Inventory Estimation for the Activated Bioshioeld Concrete of KRR-2," Journal of Radiation Protection, 37(4), 202(2012). https://doi.org/10.14407/jrp.2012.37.4.202
  2. Choi, W. G., "A State of the Art on the Technology for Reduction and Reuse of the Decommissioning Concrete Wastes," Korea Atomic Energy Research Institute Report, KAERI/AR-800, 2008.
  3. Murugadoss, G., Rajesh Kumar, M., "Optical and Structural Characterization of CdS/ZnS CdS:Cu2+/ZnS Core-shell Nanoparticles," Luminescence, 29(6), 663-668(2014). https://doi.org/10.1002/bio.2603
  4. Youn, H. C., Baral, S. and Fendler, J. H., "Dihexadecyl Phosphate, Vesiclestabilized and in situ Generated Mixed Cadmium Sulfide and Zinc Sulfide Semiconductor Particles: Preparation and Utilization for Photosensitized Charge Separation and Hydrogen Generation," Journal of Physical Chemistry, 92, 6320-6327(1988). https://doi.org/10.1021/j100333a029
  5. Kortan, A. R., Hull, R., Opila, R. L., Bawendi, M. G., Steigerwald M. L., Carroll, P. J. and Louis E. Brus, "Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media," Journal of the American Chemical Society, 112, 1327-1332(1990). https://doi.org/10.1021/ja00160a005
  6. Danek, M., Jensen, K. F., Murray, C. B. and Bawendi, M. G., "Synthesis of Luminescent Thin-film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with An Overlayer of ZnSe," Chem Materials., 8(1), 173-180(1996). https://doi.org/10.1021/cm9503137
  7. Littau, K. A., Szajowski, P. J., Muller, A. J., Kortan, A. R. and Brus, L. E., "A Luminescent Silicon Nanocrystal Colloid via a High-temperature Aerosol Reaction," Journal of Physical Chemistry, 97(6), 1224-1230(1993), https://doi.org/10.1021/j100108a019
  8. Wilson, W. L., Szajowski, P. F. and Brus, L. E., "Quantum Confinement in Size-selected, Surface-oxidized Silicon Nanocrystals," Science, 262(5137), 1242-1244(1993). https://doi.org/10.1126/science.262.5137.1242
  9. Hines, M. A. and Guyot-Sionnest, P., "Synthesis and Characterization of Strongly Luminescing ZnS-capped CdSe Nanocrystals," Journal of Physical Chemistry, 100(2), 468-471(1996). https://doi.org/10.1021/jp9530562
  10. Yang, Y., Chen, O., Angerhofer, A. and Cao, Y. C., "Radial-position-controlled Doping in CdS/ZnS Core/shell Nanocrystals," Journal of the American Chemical Society, 128(38), 12428-12429(2006). https://doi.org/10.1021/ja064818h
  11. Bhargava, R. N., Gallagher, D., Hong, X. and Nurmikko, A., "Optical Properties of Manganese-doped Nanocrystals of ZnS," Physical Review Letters, 72(17), 416-419(1994). https://doi.org/10.1103/PhysRevLett.72.416
  12. Bhargava, R. N., "Doped Nanocrystalline Materials - Physics and Applications," Journal of Luminescence, 70, 85-94(1996). https://doi.org/10.1016/0022-2313(96)00046-4
  13. Chang, K. S., "Structural and Optical Characteristics of ZnS/CdS Powders and Thin Films," Journal of the Korea Institute of Military Science and Technology, 13(4), 659-664(2010).
  14. Nam, J. S., Kim, Y. U., Hong, S. B. and Seo, B. K., "Performance Evaluation of a Plastic Scintillator for Making a In-situ Beta Detector," New Physics : Sae Mulli, 67(9), 1080-1085(2017). https://doi.org/10.3938/NPSM.67.1080
  15. Park, J. M., Kim, H. H., Hwang, Y. S., Kim, D. H. and Park, H. W., "Scintillation Properties of Quantum-dot Doped Styrene Based Plastic Scintillators," Journal of Luminescence, 146, 157-161(2014). https://doi.org/10.1016/j.jlumin.2013.09.051
  16. Metwally Madkour, Tasneem Salih, Fakhreia Al-Sagheer, Ali Bumajdad, "Nano-heterostructured Photo-stable CdzZn1-xS Heterojunction as a Non-photocorrosive Visible Light Active Photocatalyst," Optical Materials Express, 6(9), 2857-2870(2016). https://doi.org/10.1364/OME.6.002857
  17. M. Sean Healy, James E. Hanson, "Fluorescence Excitation Spectroscopy of Polystyrene Near the Critical Concentration c*," Journal of Applied Polymer Science, 104(1), 360-364(2007). https://doi.org/10.1002/app.24796
  18. Xinmei, L., Yang, J., Xinzheng, L., Yugang, Z., Shanying, L., Junwei, L., Tingting, H., Binbin, W. and Honghai, Z., "Highly Luminescent Blue Emitting CdS/ZnS Core/shell Quantum Dots via a Single-molecular Precursor for Shell Growth," 130(3), 909-914(2011). https://doi.org/10.1016/j.matchemphys.2011.08.009