DOI QR코드

DOI QR Code

HTPB 계열 추진제의 알루미늄 함량에 따른 충격감도 및 마찰감도 연구

Impact Sensitivity and Friction Sensitivity of HTPB Based Propellant According to the Aluminum Content

  • 투고 : 2020.12.07
  • 심사 : 2021.10.15
  • 발행 : 2021.12.31

초록

본 논문에서는 추진기관에 충전된 추진제의 알루미늄의 조성 불균일에 따른 추진제의 점화 가능성을 확인하고자 하였다. 추진제 내부의 알루미늄의 불균일한 분포를 모사하기 위해 알루미늄 함량을 14~20%까지 임의로 변경하여 충격감도, 마찰감도 시험을 수행하였다. 충격감도를 측정한 결과 50% 기폭 에너지 및 최소 기폭 에너지는 알루미늄 함량과 무관하게 50 J 부근의 값을 가진다. 이는 알루미늄 함량이 증가하여도 충격 자극에 추진제가 민감해지지 않는다는 것을 의미한다. 반면에 마찰감도 결과에서는 알루미늄 함량이 증가할수록 50% 기폭힘과 최소 기폭힘이 감소하여 추진제가 민감해지는 것을 알 수 있었다. 이는 추진제 발화 시의 "Hot Spot" 모델에 따라 충격 자극보다 마찰 자극에 의해 추진제 내부의 공간이 순간적으로 압축이 되어 발화가 되는 것으로 추정된다.

In this paper, we examined the ignition possibility of the propellant depending on its non-uniform composition of aluminum. Impact and friction sensitivity was investigated by arbitrarily changing the aluminum content in the range of 14~20% to simulate the non-uniform distribution of aluminum in the propellant. As a result of measuring the impact sensitivity, the 50% ignition energy and minimum ignition energy have values around 50 J regardless of the aluminum content. This means that the propellant does not become sensitive to impact even if the aluminum content is increased. On the other hand, the friction sensitivity result shows that as the aluminum content increases, the 50% ignition force and minimum ignition forces were decreased, and thus the propellant becomes sensitive. "Hot Spot" model of propellant ignition is applied, the space inside the propellant is momentarily compressed and ignited by friction stimuli rather than by impact stimuli.

키워드

참고문헌

  1. Oberth, A.E., Principle of solid propellant development, Chemical Propulsion Information Agency, Baltimore, M.D., U.S.A., 1987.
  2. Travis R. Sippel, Steven F. Son and Lori J. Groven, "Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles," Combustion and Flame, Vol. 161, pp. 311-321, 2014. https://doi.org/10.1016/j.combustflame.2013.08.009
  3. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 8th ed., John Wiley &Sons Inc., New York, N.Y., U.S.A., 2010.
  4. Luigi T. Deluca, "Overview of Al-based nanoenergetic ingredients for solid rocket propulsion," Defence Technology, Vol. 14, pp. 357-365, 2018. https://doi.org/10.1016/j.dt.2018.06.005
  5. Choi, J.Y., Lee, S.J., Kim, J.H., Kim, J.Y. and Park, E.Y., "Research of Solid Propellant Electrostatic Sensitivity in Confinement," Journal of the Korean Society of Propulsion Engineers, Vol. 24, pp. 73-78, 2020.
  6. W.Q. Pang, F.Q. Zhao, L.T. DeLuca, C. Kappenstein, W. H.X. Xu and X.Z. Fan, "Effects of Nano-Sized Al on the Combustion Performance of Fuel Rich Solid Rocket Propellants," Eurasian Chemico-Technological Journal, Vol. 18, pp. 197-206, 2016. https://doi.org/10.18321/ectj425
  7. W.Q. Pang, X.Z. Fan, F.Q. Zhao, W. Zhang, H.X. Xu, H.J. Yu, W.X. Xie, N. Yan and F.L. Liu, "Effects of Different Nano-Metric Particles on the Properties of Composite Solid Propellants," Propellants Explos. Pyrotech, Vol. 39, pp. 329-336, 2014. https://doi.org/10.1002/prep.201300172
  8. U.S. Depart of Defense, Safety and performance tests for the qualification of explosives(High explosives, Propellants, and Pyrotechnics), MILSTD-1751A, 2001.
  9. John E. Field, "Hot Spot Ignition Mechanisms for Explosives," Acc. Chem. Res., Vol. 25, pp. 489-496, 1992. https://doi.org/10.1021/ar00023a002