DOI QR코드

DOI QR Code

Biodegradative Activities of Fungal Strains Isolated from Terrestrial Environments in Korea

  • Lee, Seung-Yeol (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Ten, Leonid N. (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Das, Kallol (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • You, Young-Hyun (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Jung, Hee-Young (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2021.01.18
  • Accepted : 2021.03.10
  • Published : 2021.06.30

Abstract

Polylactic acid (PLA) and polycaprolactone (PCL) are commercially available bioplastics that are exploited worldwide, and both are biodegradable. The PLA and PCL polymer-degrading activity of 30 fungal strains that were isolated from terrestrial environments were screened based on the formation of a clear zone around fungal colonies on agar plates containing emulsified PLA or PCL. Among them, five strains yielded positive results of biodegradation. Strains Korean Agricultural Culture Collection (KACC) 83034BP and KNUF-20-PPH03 exhibited PCL degradation; two other strains, KACC 83035BP and KNUF-20-PDG05, degraded PLA; and the fifth strain, KACC 83036BP, biodegraded both tested plastics. Based on phylogenetic analyses using various combinations of the sequences of internal transcribed spacer (ITS) regions, RPB2, LSU, CAL, and b-TUB genes, the above-mentioned strains were identified as Apiotrichum porosum, Penicillium samsonianum, Talaromyces pinophilus, Purpureocillium lilacinum, and Fusicolla acetilerea, respectively. Based on our knowledge, this is the first report on (i) plastic biodegraders among Apiotrichum and Fusicolla species, (ii) the capability of T. pinophilus to degrade biodegradable plastics, (iii) the biodegradative activity of P. samsonianum against PCL, and (iv) the accurate identification of P. lilacinum as a PLA biodegrader. Further studies should be conducted to determine how the fungal species can be utilized in Korea.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea [NIBR202002104, NIBR202102109] and the Brain Pool Program (Grant No. 2020H1D3A2A01103925) through the National Research Foundation funded by the Ministry of Science and ICT, Republic of Korea.

References

  1. Alimba CG, Faggio C. Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol. 2019;68:61-74. https://doi.org/10.1016/j.etap.2019.03.001
  2. Pathak VM. Navneet Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess. 2017;4:15. https://doi.org/10.1186/s40643-017-0145-9
  3. Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2(2):307-344. https://doi.org/10.3390/ma2020307
  4. Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules. 2005;6(2):538-546. https://doi.org/10.1021/bm0494702
  5. Qi X, Ren Y, Wang X. New advances in the biodegradation of poly(lactic) acid. Int Biodeterior Biodegrad. 2017;117:215-223. https://doi.org/10.1016/j.ibiod.2017.01.010
  6. Fukushima K, Abbate C, Tabuani D, et al. Biodegradation trend of poly(e-caprolactone) and nanocomposites. Mater Sci Eng. 2010;30(4):566-574. https://doi.org/10.1016/j.msec.2010.02.012
  7. Ishii N, Inoue Y, Shimada KI, et al. Fungal degradation of poly (ethylene succinate). Polym Degrad Stab. 2007;92(1):44-52. https://doi.org/10.1016/j.polymdegradstab.2006.09.014
  8. Torres A, Li SM, Roussos S, et al. Screening of microorganisms for biodegradation of poly(lacticacid) and lactic acid-containing polymers. Appl Environ Microbiol. 1996;62(7):2393-2397. https://doi.org/10.1128/aem.62.7.2393-2397.1996
  9. Lipsa R, Tudorachi N, Darie-Nita RN, et al. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. Int J Biol Macromol. 2016;88:515-526. https://doi.org/10.1016/j.ijbiomac.2016.04.017
  10. Jarerat A, Tokiwa Y. Degradation of poly (L-lactide) by a fungus. Macromol Biosci. 2001;1(4):136-140. https://doi.org/10.1002/1616-5195(20010601)1:4<136::AID-MABI136>3.0.CO;2-3
  11. Li F, Yu D, Lin X, et al. Biodegradation of poly(ε-caprolactone) (PCL) by a new Penicillium oxalicum strain DSYD05-1. World J Microbiol Biotechnol. 2012;28(10):2929-2935. https://doi.org/10.1007/s11274-012-1103-5
  12. Lee K-M, Gimore DF, Huss MJ. Fungal degradation of the bioplastic PHB (poly-3-hydroxybutyric acid). J Polym Environ. 2005;13(3):213-219. https://doi.org/10.1007/s10924-005-4756-4
  13. Masaki K, Kamini NR, Ikeda H, et al. Cutinaselike enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol. 2005;71(11):7548-7550. https://doi.org/10.1128/AEM.71.11.7548-7550.2005
  14. Li F, Hu X, Guo Z, et al. Purification and characterization of a novel poly(butylene succinate)-degrading enzyme from Asperillus sp. XH0501-a. World J Microbiol Biotechnol. 2011;27(11):2591-2596. https://doi.org/10.1007/s11274-011-0731-5
  15. Antipova TV, Zhelifonova VP, Zaitsev KV, et al. Biodegradation of poly-ε-caprolactones and poly-l-lactides by fungi. J Polym Environ. 2018;26(12):4350-4359. https://doi.org/10.1007/s10924-018-1307-3
  16. Haider TP, Volker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed. 2018;57:2-15. https://doi.org/10.1002/anie.201712504
  17. Muthukumar A, Veerappapillai S. Biodegradation of plastics: a brief review. Int J Pharm Sci Rev Res. 2015;31:204-209.
  18. Mao H, Liu H, Gao Z, et al. Biodegradation of poly(butylene succinate) by Fusarium sp. FS130 and purification and characterization of poly (butylene succinate). Polym Degrad. 2015;114:1-7. https://doi.org/10.1016/j.polymdegradstab.2015.01.025
  19. Tezuka Y, Ishii N, Kasuya KI, et al. Degradation of poly(ethylene succinate) by mesophilic bacteria. Polym Degrad. 2004;84(1):115-121. https://doi.org/10.1016/j.polymdegradstab.2003.09.018
  20. Park S, Ten L, Lee SY, et al. New recorded species in three genera of the Sordariomycetes in Korea. Mycobiology. 2017;45(2):64-72. https://doi.org/10.5941/MYCO.2017.45.2.64
  21. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7(1):103-116. https://doi.org/10.1006/mpev.1996.0376
  22. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  23. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.2307/3761358
  24. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  25. Liu YL, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  26. Sung G-H, Sung J-M, Hywel-Jones NL, et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol. 2007;44(3):1204-1223. https://doi.org/10.1016/j.ympev.2007.03.011
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  29. Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017;59:526-536. https://doi.org/10.1016/j.wasman.2016.10.006
  30. Cook WJ, Cameron JA, Bell JP, et al. Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. J Polym Sci B Polym Lett Ed. 1981;19(4):159-165. https://doi.org/10.1002/pol.1981.130190402
  31. Devi SS, Sreenivasulu Y, Rao KVB. Talaromyces verruculosus, a novel marine fungi as a potent polyhydroxybutyrate degrader. Res J Pharm Tech. 2014;7:433-438.
  32. Penkhrue W, Khanongnuch C, Masaki K, et al. Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol. 2015;31(9):1431-1442. https://doi.org/10.1007/s11274-015-1895-1