Acknowledgement
This work was supported by the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea (projects NIBR201921101 and NIBR202021101).
References
- Kellogg J, Raja HA. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev. 2017;16(2):271-293. https://doi.org/10.1007/s11101-016-9473-1
- Kim TY, Jang JY, Yu NH, et al. Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest Manag Sci. 2018;74(2):384-391. https://doi.org/10.1002/ps.4717
- Edwards RL, Maitland DJ, Pittayakhajonwut P, et al. Metabolites of the higher fungi. Part 33. Grammicin, a novel bicyclic C7H6O4 furanopyranol from the fungus Xylaria grammica (Mont.) Fr. Perkin Trans. 2001;1(11):1296-1299.
- Wang A, Wang Z, Li Z, et al. BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach. Bioinformatics. 2018;34(12):2019-2028. https://doi.org/10.1093/bioinformatics/bty020
- Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive kmer weighting and repeat separation. Genome Res. 2017;27(5):722-736. https://doi.org/10.1101/gr.215087.116
- Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963. https://doi.org/10.1371/journal.pone.0112963
- Waterhouse RM, Seppey M, Simao FA, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35(3):543-548. https://doi.org/10.1093/molbev/msx319
- Bruna T, Hoff KJ, Lomsadze A, et al. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP + and AUGUSTUS supported by a protein database. NAR Genom Bioinform. 2021;3:108.
- Blin K, Shaw S, Steinke K, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81-W87. https://doi.org/10.1093/nar/gkz310
- Artigot MP, Loiseau N, Laffitte J, et al. Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology. 2009;155(Pt 5):1738-1747. https://doi.org/10.1099/mic.0.024836-0
- Park J, Park J, Jang S, et al. FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics. 2008;24(7):1024-1025. https://doi.org/10.1093/bioinformatics/btn058
- Park J, Lee S, Choi J, et al. Fungal cytochrome P450 database. BMC Genomics. 2008;9:402. https://doi.org/10.1186/1471-2164-9-402
- Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob Dna. 2015;6:11. https://doi.org/10.1186/s13100-015-0041-9
- Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9(5):411-412. https://doi.org/10.1038/nrg2165-c1
- Smit AFA, Hubley R, Green P. RepeatMasker. 2015. Available from: http://repeatmasker.org.
- Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1-14. https://doi.org/10.1007/978-1-4939-9173-0_1
- Burge SW, Daub J, Eberhardt R, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41(Database issue):D226-D232. https://doi.org/10.1093/nar/gks1005