Acknowledgement
This work was supported by a grant from the New Breeding Technologies Development Program [Project No. PJ01516502], Rural Development Administration, Republic of Korea.
References
- Eastwood DC. Evolution of fungal wood decay. In: Schultz TP, Goodell D, Nicholas DD, editors. Deterioration and protection of sustainable biomass. Washington (DC): American Chemical Society (ACS Symposium Series; vol. 1158); 2014. p. 5-93.
- Hawksworth D. Coal measure formation and lignin-degrading fungi. IMA Fungus. 2012;3(2):55-58.
- Nelsen MP, DiMichele WA, Peters SE, et al. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proc Natl Acad Sci USA. 2016;113(9):2442-2447. https://doi.org/10.1073/pnas.1517943113
- Floudas D, Binder M, Riley R, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336(6089):1715-1719. https://doi.org/10.1126/science.1221748
- de Lima GG, Schoenherr ZCP, Magalhaes WLE, et al. Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. Bioresour Bioprocess. 2020;7(1):58. https://doi.org/10.1186/s40643-020-00346-2
- Elsacker E, Vandelook S, Brancart J, et al. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One. 2019;14(7):e0213954. https://doi.org/10.1371/journal.pone.0213954
- Tacer-Caba Z, Varis JJ, Lankinen P, et al. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater Des. 2020;192:108728. https://doi.org/10.1016/j.matdes.2020.108728
- Bhardwaj A, Vasselli J, Lucht M, et al. 3D printing of biomass-fungi composite material: a preliminary study. Manuf Lett. 2020;24:96-99. https://doi.org/10.1016/j.mfglet.2020.04.005
- Cho SY, Ryu GH. Effects of mushroom composition on the quality characteristics of extruded meat analog. Kor J Food Sci Technol. 2020;52(4):357-362. https://doi.org/10.9721/KJFST.2020.52.4.357
- Ahirwar R, Jayathilakan K, Jalarama RK, et al. Development of mushroom and wheat gluten based meat analogue by using response surface methodology. Int J Adv Res. 2015;3(1):923-930.
- Appels FVW, Dijksterhuis J, Lukasiewicz CE, et al. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci Rep. 2018;8(1):4703. https://doi.org/10.1038/s41598-018-23171-2
- Hartmann F, Baumgartner M, Kaltenbrunner M. Becoming sustainable, the new frontier in soft robotics. Adv Mater. 2020;2020:2004413.
- Holt G, Mcintyre G, Flagg D, et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J Biobased Mat Bioenergy. 2012;6(4):431-439. https://doi.org/10.1166/jbmb.2012.1241
- Jung IC, Kim SH, Kwon YI, et al. Cultural condition for the mycelial growth of Ganoderma lucidum on cereals. Kor J Mycol. 1996;24(1):81-88.
- Hu G, Zhai M, Niu R, et al. Optimization of culture condition for ganoderic acid production in Ganoderma lucidum liquid static culture and design of a suitable bioreactor. Molecules. 2018;23(10):2563. https://doi.org/10.3390/molecules23102563
- Meng L, Bai X, Zhang S, et al. Enhanced ganoderic acids accumulation and transcriptional responses of biosynthetic genes in Ganoderma lucidum fruiting bodies by elicitation supplementation. IJMS. 2019;20(11):2830. https://doi.org/10.3390/ijms20112830
- Jones M, Mautner A, Luenco S, et al. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des. 2020;187:108397. https://doi.org/10.1016/j.matdes.2019.108397
- Jones M, Gandia A, John S, et al. Leather-like material biofabrication using fungi. Nat Sustain. 2021;4(1):9-16. https://doi.org/10.1038/s41893-020-00606-1