DOI QR코드

DOI QR Code

Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis

  • Lee, Eunjin (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Ji Eun (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.04.04
  • Accepted : 2021.04.23
  • Published : 2021.06.30

Abstract

It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2021R1C1C1004546, NRF-2021M3A9H3015689).

References

  1. An EUA for bamlanivimab - a monoclonal antibody for COVID-19. (2020). Med. Lett. Drugs Ther. 62, 185-186.
  2. Anderson, E.M., Goodwin, E.C., Verma, A., Arevalo, C.P., Bolton, M.J., Weirick, M.E., Gouma, S., McAllister, C.M., Christensen, S.R., Weaver, J., et al. (2021). Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184, 1858-1864. e10. https://doi.org/10.1016/j.cell.2021.02.010
  3. Annavajhala, M.K., Mohri, H., Zucker, J.E., Sheng, Z., Wang, P., Gomez-Simmonds, A., Ho, D.D., and Uhlemann, A.C. (2021). A novel SARS-CoV-2 variant of concern, B. 1.526, identified in New York. MedRxiv, https://doi.org/10.1101/2021.02.23.21252259
  4. Arvin, A.M., Fink, K., Schmid, M.A., Cathcart, A., Spreafico, R., Havenar-Daughton, C., Lanzavecchia, A., Corti, D., and Virgin, H.W. (2020). A perspective on potential antibody-dependent enhancement of SARSCoV-2. Nature 584, 353-363. https://doi.org/10.1038/s41586-020-2538-8
  5. Atyeo, C., Fischinger, S., Zohar, T., Slein, M.D., Burke, J., Loos, C., McCulloch, D.J., Newman, K.L., Wolf, C., Yu, J., et al. (2020). Distinct early serological signatures track with SARS-CoV-2 survival. Immunity 53, 524-532.e4. https://doi.org/10.1016/j.immuni.2020.07.020
  6. Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael, N., Creech, C.B., et al. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403-416. https://doi.org/10.1056/NEJMoa2035389
  7. Barnes, C.O., Jette, C.A., Abernathy, M.E., Dam, K.A., Esswein, S.R., Gristick, H.B., Malyutin, A.G., Sharaf, N.G., Huey-Tubman, K.E., Lee, Y.E., et al. (2020). SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682-687. https://doi.org/10.1038/s41586-020-2852-1
  8. Bastard, P., Rosen, L.B., Zhang, Q., Michailidis, E., Hoffmann, H.H., Zhang, Y., Dorgham, K., Philippot, Q., Rosain, J., Beziat, V., et al. (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585. https://doi.org/10.1126/science.abd4585
  9. Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., Ni, M., Wei, Y., Mohammadi, K., Musser, B., et al. (2020a). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110-1115. https://doi.org/10.1126/science.abe2402
  10. Baum, A., Fulton, B.O., Wloga, E., Copin, R., Pascal, K.E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni, M., et al. (2020b). Antibody cocktail to SARS0CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014-1018. https://doi.org/10.1126/science.abd0831
  11. Bhadelia, N., Belkina, A.C., Olson, A., Winters, T., Urick, P., Lin, N., Rifkin, I., Kataria, Y., Yuen, R.R., Sagar, M., et al. (2021). Distinct autoimmune antibody signatures between hospitalized acute COVID-19 patients, SARS-CoV-2 convalescent individuals, and unexposed pre-pandemic controls. MedRxiv, https://doi.org/10.1101/2021.01.21.21249176
  12. Brouwer, P.J.M., Caniels, T.G., van der Straten, K., Snitselaar, J.L., Aldon, Y., Bangaru, S., Torres, J.L., Okba, N.M.A., Claireaux, M., Kerster, G., et al. (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 369, 643-650. https://doi.org/10.1126/science.abc5902
  13. Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell 182, 73-84.e16. https://doi.org/10.1016/j.cell.2020.05.025
  14. Castagnoli, R., Votto, M., Licari, A., Brambilla, I., Bruno, R., Perlini, S., Rovida, F., Baldanti, F., and Marseglia, G.L. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 174, 882-889. https://doi.org/10.1001/jamapediatrics.2020.1467
  15. Chen, P., Nirula, A., Heller, B., Gottlieb, R.L., Boscia, J., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., et al. (2021). SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med. 384, 229-237. https://doi.org/10.1056/NEJMoa2029849
  16. Claro, I.M., da Silva Sales, F.C., Ramundo, M.S., Candido, D.S., Silva, C.A.M., de Jesus, J.G., Manuli, E.R., de Oliveira, C.M., Scarpelli, L., Campana, G., et al. (2021). Local transmission of SARS-CoV-2 lineage B.1.1.7, Brazil, December 2020. Emerg. Infect. Dis. 27, 970-972. https://doi.org/10.3201/eid2703.210038
  17. Collier, D.A., De Marco, A., Ferreira, I., Meng, B., Datir, R., Walls, A.C., Kemp, S.S., Bassi, J., Pinto, D., Fregni, C.S., et al. (2021). Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021 Mar 11 [Epub]. https://doi.org/10.1038/s41586-021-03412-7
  18. Deng, X., Garcia-Knight, M.A., Khalid, M.M., Servellita, V., Wang, C., Morris, M.K., Sotomayor-Gonzalez, A., Glasner, D.R., Reyes, K.R., Gliwa, A.S., et al. (2021). Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. MedRxiv, https://doi.org/10.1101/2021.03.07.21252647
  19. Duysburgh, E., Mortgat, L., Barbezange, C., Dierick, K., Fischer, N., Heyndrickx, L., Hutse, V., Thomas, I., Van Gucht, S., Vuylsteke, B., et al. (2021). Persistence of IgG response to SARS-CoV-2. Lancet Infect. Dis. 21, 163-164. https://doi.org/10.1016/S1473-3099(20)30943-9
  20. Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D.S., Mishra, S., Crispim, M.A.E., Sales, F.C., Hawryluk, I., McCrone, J.T., et al. (2021). Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. MedRxiv, https://doi.org/10.1101/2021.02.26.21252554
  21. Fujino, T., Nomoto, H., Kutsuna, S., Ujiie, M., Suzuki, T., Sato, R., Fujimoto, T., Kuroda, M., Wakita, T., and Ohmagari, N. (2021). Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg. Infect. Dis. 27, 1243-1245.
  22. Gaebler, C., Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Tokuyama, M., Cho, A., Jankovic, M., Schaefer-Babajew, D., Oliveira, T.Y., et al. (2021). Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639-644. https://doi.org/10.1038/s41586-021-03207-w
  23. Galloway, S.E., Paul, P., MacCannell, D.R., Johansson, M.A., Brooks, J.T., MacNeil, A., Slayton, R.B., Tong, S., Silk, B.J., Armstrong, G.L., et al. (2021). Emergence of SARS-CoV-2 B.1.1.7 lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 95-99. https://doi.org/10.15585/mmwr.mm7003e2
  24. Garcia-Beltran, W.F., Lam, E.C., Astudillo, M.G., Yang, D., Miller, T.E., Feldman, J., Hauser, B.M., Caradonna, T.M., Clayton, K.L., Nitido, A.D., et al. (2021a). COVID-19-neutralizing antibodies predict disease severity and survival. Cell 184, 476-488.e11. https://doi.org/10.1016/j.cell.2020.12.015
  25. Garcia-Beltran, W.F., Lam, E.C., St Denis, K., Nitido, A.D., Garcia, Z.H., Hauser, B.M., Feldman, J., Pavlovic, M.N., Gregory, D.J., Poznansky, M.C., et al. (2021b). Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021 Mar 12 [Epub]. https://doi.org/10.1016/j.cell.2021.03.013
  26. Gottlieb, R.L., Nirula, A., Chen, P., Boscia, J., Heller, B., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., et al. (2021). Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325, 632-644. https://doi.org/10.1001/jama.2021.0202
  27. Greaney, A.J., Starr, T.N., Gilchuk, P., Zost, S.J., Binshtein, E., Loes, A.N., Hilton, S.K., Huddleston, J., Eguia, R., Crawford, K.H.D., et al. (2021). Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29, 44-57.e9. https://doi.org/10.1016/j.chom.2020.11.007
  28. Gudbjartsson, D.F., Norddahl, G.L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., Arnthorsson, A.O., Helgason, D., Bjarnadottir, K., Ingvarsson, R.F., et al. (2020). Humoral immune response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 383, 1724-1734. https://doi.org/10.1056/NEJMoa2026116
  29. Happi, A.N., Ugwu, C.A., and Happi, C.T. (2021). Tracking the emergence of new SARS-CoV-2 variants in South Africa. Nat. Med. 27, 372-373. https://doi.org/10.1038/s41591-021-01265-1
  30. Hartley, G.E., Edwards, E.S.J., Aui, P.M., Varese, N., Stojanovic, S., McMahon, J., Peleg, A.Y., Boo, I., Drummer, H.E., Hogarth, P.M., et al. (2020). Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci. Immunol. 5, eabf8891. https://doi.org/10.1126/sciimmunol.abf8891
  31. Hashem, A.M., Algaissi, A., Almahboub, S.A., Alfaleh, M.A., Abujamel, T.S., Alamri, S.S., Alluhaybi, K.A., Hobani, H.I., AlHarbi, R.H., Alsulaiman, R.M., et al. (2020). Early humoral response correlates with disease severity and outcomes in COVID-19 patients. Viruses 12, 1390. https://doi.org/10.3390/v12121390
  32. Heath, P.T., Galiza, E.P., Baxter, D., Boffito, M., Browne D., Burns, F., Chadwick, D.R., Clark, R., Cosgrove, C., Galloway, J., et al. (2021). Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B. 1.1. 7 variant. MedRxiv, https://doi.org/10.1101/2021.05.13.21256639
  33. Hirotsu, Y. and Omata, M. (2021). Discovery of a SARS-CoV-2 variant from the P. 1 lineage harboring K417T/E484K/N501Y mutations in Kofu, Japan. J. Infect. 82, 276-316. https://doi.org/10.1016/j.jinf.2021.03.013
  34. Hoffmann, M., Arora, P., Gross, R., Seidel, A., Hornich, B.F., Hahn, A.S., Kruger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., et al. (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021 Mar 20 [Epub]. https://doi.org/10.1016/j.cell.2021.03.036
  35. Ibarrondo, F.J., Fulcher, J.A., Goodman-Meza, D., Elliott, J., Hofmann, C., Hausner, M.A., Ferbas, K.G., Tobin, N.H., Aldrovandi, G.M., and Yang, O.O. (2020). Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N. Engl. J. Med. 383, 1085-1087. https://doi.org/10.1056/nejmc2025179
  36. Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., et al. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115-119. https://doi.org/10.1038/s41586-020-2380-z
  37. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043
  38. Li, Q., Wu, J., Nie, J., Zhang, L., Hao, H., Liu, S., Zhao, C., Zhang, Q., Liu, H., Nie, L., et al. (2020). The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182, 1284-1294.e9. https://doi.org/10.1016/j.cell.2020.07.012
  39. Liu, H., Wei, P., Zhang, Q., Chen, Z., Aviszus, K., Downing, W., Peterson, S., Reynoso, L., Downey, G.P., Frankel, S.K., et al. (2021). 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to Bamlanivimab in vitro. BioRxiv, https://doi.org/10.1101/2021.02.16.431305
  40. Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J.F., Sahi, V., Figueroa, A., et al. (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450-456. https://doi.org/10.1038/s41586-020-2571-7
  41. Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H., Nishiura, K., Peng, J., Tan, Z., et al. (2019). Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158. https://doi.org/10.1172/jci.insight.123158
  42. Lucas, C., Klein, J., Sundaram, M., Liu, F., Wong, P., Silva, J., Mao, T., Oh, J.E., Tokuyama, M., Lu, P., et al. (2020). Kinetics of antibody responses dictate COVID-19 outcome. MedRxiv, https://doi.org/10.1101/2020.12.18.20248331
  43. Mahase, E. (2021). Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 372, n296. https://doi.org/10.1136/bmj.n296
  44. Muik, A., Wallisch, A.K., Sanger, B., Swanson, K.A., Muhl, J., Chen, W., Cai, H., Maurus, D., Sarkar, R., Tureci, O., et al. (2021). Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152-1153. https://doi.org/10.1126/science.abg6105
  45. Naveca, F., da Costa, C., Nascimento, V., Souza, V., Corado, A., Nascimento, F., Costa, A., Duarte, D., Silva, G., Mejia, M., et al. (2021). SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil. virological.
  46. Ng, K.W., Faulkner, N., Cornish, G.H., Rosa, A., Harvey, R., Hussain, S., Ulferts, R., Earl, C., Wrobel, A.G., Benton, D.J., et al. (2020). Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339-1343. https://doi.org/10.1126/science.abe1107
  47. Nguyen-Contant, P., Embong, A.K., Kanagaiah, P., Chaves, F.A., Yang, H., Branche, A.R., Topham, D.J., and Sangster, M.Y. (2020). S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. mBio 11, e01991-20.
  48. Nonaka, C.K.V., Franco, M.M., Graf, T., de Lorenzo Barcia, C.A., de Avila Mendonca, R.N., de Sousa, K.A.F., Neiva, L.M.C., Fosenca, V., Mendes, A.V.A., de Aguiar, R.S., et al. (2021). Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg. Infect. Dis. 27, 1522-1524. https://doi.org/10.3201/eid2705.210191
  49. Oude Munnink, B.B., Sikkema, R.S., Nieuwenhuijse, D.F., Molenaar, R.J., Munger, E., Molenkamp, R., van der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., et al. (2021). Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172-177. https://doi.org/10.1126/science.abe5901
  50. Oxner, R. (2020). Denmark to kill up to 17 million minks after discovering mutated coronavirus. Retrieved March 24, 2021, from https://www.npr.org/2020/11/05/931726205/denmark-to-kill-up-to-17-million-minks-after-discovering-mutated-coronavirus
  51. Paiva, M.H.S., Guedes, D.R.D., Docena, C., Bezerra, M.F., Dezordi, F.Z., Machado, L.C., Krokovsky, L., Helvecio, E., da Silva, A.F., Vasconcelos, L., et al. (2020). Multiple introductions followed by ongoing community spread of SARS-CoV-2 at one of the largest metropolitan areas of Northeast Brazil. Viruses 12, 1414. https://doi.org/10.3390/v12121414
  52. Pinto, D., Park, Y.J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., et al. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290-295. https://doi.org/10.1038/s41586-020-2349-y
  53. Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc, G., Moreira, E.D., Zerbini, C., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603-2615. https://doi.org/10.1056/NEJMoa2034577
  54. Poston, D., Weisblum, Y., Wise, H., Templeton, K., Jenks, S., Hatziioannou, T., and Bieniasz, P. (2020). Absence of SARS-CoV-2 neutralizing activity in pre-pandemic sera from individuals with recent seasonal coronavirus infection. Clin. Infect. Dis. 2020 Dec 3 [Epub]. https://doi.org/10.1093/cid/ciaa1803
  55. Resende, P.C., Bezerra, J.F., Vasconcelos, R.H.T., Arantes, I., Appolinario, L., Mendonca, A.C., Paixao, A.C., Rodrigues, A.C.D., Silva, T., Rocha, A.S., et al. (2021). Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020. virological.
  56. Rodda, L.B., Netland, J., Shehata, L., Pruner, K.B., Morawski, P.A., Thouvenel, C.D., Takehara, K.K., Eggenberger, J., Hemann, E.A., Waterman, H.R., et al. (2021). Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 184, 169-183.e17. https://doi.org/10.1016/j.cell.2020.11.029
  57. Roltgen, K., Powell, A.E., Wirz, O.F., Stevens, B.A., Hogan, C.A., Najeeb, J., Hunter, M., Wang, H., Sahoo, M.K., Huang, C., et al. (2020a). Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol. 5, eabe0240. https://doi.org/10.1126/sciimmunol.abe0240
  58. Roltgen, K., Wirz, O.F., Stevens, B.A., Powell, A.E., Hogan, C.A., Najeeb, J., Hunter, M., Sahoo, M.K., Huang, C., Yamamoto, F., et al. (2020b). SARS-CoV-2 antibody responses correlate with resolution of RNAemia but are short-lived in patients with mild illness. MedRxiv, https://doi.org/10.1101/2020.08.15.20175794
  59. Rubin, E.J., Baden, L.R., Abdool Karim, S.S., and Morrissey, S. (2021). Audio interview: Covid-19 in South Africa and a new SARS-CoV-2 variant. N. Engl. J. Med. 384, e14. https://doi.org/10.1056/NEJMe2100736
  60. Santos, J.C. and Passos, G.A. (2020). The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between Spike-ACE2 caused by the viral N501Y mutation. BioRxiv, https://doi.org/10.1101/2020.12.29.424708
  61. Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A.M., Stoop, J., Tete, S., Van Damme, W., Leroux-Roels, I., et al. (2021). Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N. Engl. J. Med. 2021 Jan 13 [Epub]. https://doi.org/10.1056/NEJMoa2034201
  62. Seow, J., Graham, C., Merrick, B., Acors, S., Pickering, S., Steel, K.J.A., Hemmings, O., O'Byrne, A., Kouphou, N., Galao, R.P., et al. (2020). Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 5, 1598-1607. https://doi.org/10.1038/s41564-020-00813-8
  63. Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., et al. (2020). A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120-124. https://doi.org/10.1038/s41586-020-2381-y
  64. Sokal, A., Chappert, P., Barba-Spaeth, G., Roeser, A., Fourati, S., Azzaoui, I., Vandenberghe, A., Fernandez, I., Meola, A., Bouvier-Alias, M., et al. (2021). Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 184, 1201-1213.e14. https://doi.org/10.1016/j.cell.2021.01.050
  65. Song, G., He, W.T., Callaghan, S., Anzanello, F., Huang, D., Ricketts, J., Torres, J.L., Beutler, N., Peng, L., Vargas, S., et al. (2020). Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. BioRxiv, https://doi.org/10.1101/2020.09.22.308965
  66. Starr, T.N., Greaney, A.J., Addetia, A., Hannon, W.W., Choudhary, M.C., Dingens, A.S., Li, J.Z., and Bloom, J.D. (2021). Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850-854. https://doi.org/10.1126/science.abf9302
  67. Sterlin, D., Mathian, A., Miyara, M., Mohr, A., Anna, F., Claer, L., Quentric, P., Fadlallah, J., Devilliers, H., Ghillani, P., et al. (2021). IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223. https://doi.org/10.1126/scitranslmed.abd2223
  68. Tan, W., Lu, Y., Zhang, J., Wang, J., Dan, Y., Tan, Z., He, X., Qian, C., Sun, Q., Hu, Q., et al. (2020). Viral kinetics and antibody responses in patients with COVID-19. MedRxiv, https://doi.org/10.1101/2020.03.24.20042382
  69. Tegally, H., Wilkinson, E., Lessells, R.J., Giandhari, J., Pillay, S., Msomi, N., Mlisana, K., Bhiman, J.N., von Gottberg, A., Walaza, S., et al. (2021). Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 27, 440-446. https://doi.org/10.1038/s41591-021-01255-3
  70. Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., et al. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9, 382-385. https://doi.org/10.1080/22221751.2020.1729069
  71. Voysey, M., Clemens, S.A.C., Madhi, S.A., Weckx, L.Y., Folegatti, P.M., Aley, P.K., Angus, B., Baillie, V.L., Barnabas, S.L., Bhorat, Q.E., et al. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99-111. https://doi.org/10.1016/S0140-6736(20)32661-1
  72. Wajnberg, A., Amanat, F., Firpo, A., Altman, D.R., Bailey, M.J., Mansour, M., McMahon, M., Meade, P., Mendu, D.R., Muellers, K., et al. (2020). Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370, 1227-1230. https://doi.org/10.1126/science.abd7728
  73. Wang, E.Y., Mao, T., Klein, J., Dai, Y., Huck, J.D., Liu, F., Zheng, N.S., Zhou, T., Israelow, B., Wong, P., et al. (2020). Diverse functional autoantibodies in patients with COVID-19. MedRxiv, https://doi.org/10.1101/2020.12.10.20247205
  74. Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Viant, C., Gaebler, C., Cipolla, M., Hoffmann, H.H., Oliveira, T.Y., Oren, D.A., et al. (2021a). Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13, eabf1555. https://doi.org/10.1126/scitranslmed.abf1555
  75. Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C.O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J.A., et al. (2021b). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616-622. https://doi.org/10.1038/s41586-021-03324-6
  76. Weissman, D., Alameh, M.G., de Silva, T., Collini, P., Hornsby, H., Brown, R., LaBranche, C.C., Edwards, R.J., Sutherland, L., Santra, S., et al. (2021). D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23-31.e4. https://doi.org/10.1016/j.chom.2020.11.012
  77. Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B.E., de Oliveira, T., Vermeulen, M., van der Berg, K., et al. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622-625. https://doi.org/10.1038/s41591-021-01285-x
  78. Woodruff, M.C., Ramonell, R.P., Lee, F.E.H., and Sanz, I. (2020a). Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. MedRxiv, https://doi.org/10.1101/2020.10.21.20216192
  79. Woodruff, M.C., Ramonell, R.P., Nguyen, D.C., Cashman, K.S., Saini, A.S., Haddad, N.S., Ley, A.M., Kyu, S., Howell, J.C., Ozturk, T., et al. (2020b). Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506-1516. https://doi.org/10.1038/s41590-020-00814-z
  80. Wu, K., Werner, A.P., Moliva, J.I., Koch, M., Choi, A., Stewart-Jones, G.B.E., Bennett, H., Boyoglu-Barnum, S., Shi, W., Graham, B.S., et al. (2021). mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. BioRxiv, https://doi.org/10.1101/2021.01.25.427948
  81. Xie, X., Liu, Y., Liu, J., Zhang, X., Zou, J., Fontes-Garfias, C.R., Xia, H., Swanson, K.A., Cutler, M., Cooper, D., et al. (2021). Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat. Med. 27, 620-621. https://doi.org/10.1038/s41591-021-01270-4
  82. Yadav, P.D., Gupta, N., Nyayanit, D.A., Sahay, R.R., Shete, A.M., Majumdar, T., Patil, S., Kaur, H., Nikam, C., Pethani, J., et al. (2021). Imported SARS-CoV-2 V501Y. V2 variant (B. 1.351) detected in travelers from South Africa and Tanzania to India. Travel Med. Infect. Dis. 41, 102023. https://doi.org/10.1016/j.tmaid.2021.102023
  83. Zhang, J., Wu, Q., Liu, Z., Wang, Q., Wu, J., Hu, Y., Bai, T., Xie, T., Huang, M., Wu, T., et al. (2021). Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nat. Microbiol. 6, 51-58. https://doi.org/10.1038/s41564-020-00824-5
  84. Zhang, W., Davis, B.D., Chen, S.S., Martinez, J.M.S., Plummer, J.T., and Vail, E. (2021). Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325, 1324-1326. https://doi.org/10.1001/jama.2021.1612
  85. Zhao, J.J., Yuan, Q., Wang, H.Y., Liu, W., Liao, X.J., Su, Y.Y., Wang, X., Yuan, J., Li, T.D., Li, J.X., et al. (2020). Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 71, 2027-2034. https://doi.org/10.1093/cid/ciaa344
  86. Zhu, Y., Yu, D., Han, Y., Yan, H., Chong, H., Ren, L., Wang, J., Li, T., and He, Y. (2020). Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Sci. Adv. 6, eabc9999. https://doi.org/10.1126/sciadv.abc9999
  87. Zohar, T., Loos, C., Fischinger, S., Atyeo, C., Wang, C., Slein, M.D., Burke, J., Yu, J., Feldman, J., Hauser, B.M., et al. (2020). Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell 183, 1508-1519.e12. https://doi.org/10.1016/j.cell.2020.10.052
  88. Zost, S.J., Gilchuk, P., Case, J.B., Binshtein, E., Chen, R.E., Nkolola, J.P., Schafer, A., Reidy, J.X., Trivette, A., Nargi, R.S., et al. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443-449. https://doi.org/10.1038/s41586-020-2548-6
  89. Zou, J., Xie, X., Fontes-Garfias, C.R., Swanson, K.A., Kanevsky, I., Tompkins, K., Cutler, M., Cooper, D., Dormitzer, P.R., and Shi, P.Y. (2021). The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization. NPJ Vaccines 6, 44. https://doi.org/10.1038/s41541-021-00313-8
  90. Zuniga, M., Gomes, C., Carsons, S.E., Bender, M.T., Cotzia, P., Miao, Q.R., Lee, D.C., and Rodriguez, A. (2021). Autoimmunity to the lung protective phospholipid-binding protein Annexin A2 predicts mortality among hospitalized COVID-19 patients. MedRxiv, https://doi.org/10.1101/2020.12.28.20248807

Cited by

  1. Humoral immune response to SARS-CoV-2 in five different groups of individuals at different environmental and professional risk of infection vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-04279-4