Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF-2021R1C1C1004546, NRF-2021M3A9H3015689).
References
- An EUA for bamlanivimab - a monoclonal antibody for COVID-19. (2020). Med. Lett. Drugs Ther. 62, 185-186.
- Anderson, E.M., Goodwin, E.C., Verma, A., Arevalo, C.P., Bolton, M.J., Weirick, M.E., Gouma, S., McAllister, C.M., Christensen, S.R., Weaver, J., et al. (2021). Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184, 1858-1864. e10. https://doi.org/10.1016/j.cell.2021.02.010
- Annavajhala, M.K., Mohri, H., Zucker, J.E., Sheng, Z., Wang, P., Gomez-Simmonds, A., Ho, D.D., and Uhlemann, A.C. (2021). A novel SARS-CoV-2 variant of concern, B. 1.526, identified in New York. MedRxiv, https://doi.org/10.1101/2021.02.23.21252259
- Arvin, A.M., Fink, K., Schmid, M.A., Cathcart, A., Spreafico, R., Havenar-Daughton, C., Lanzavecchia, A., Corti, D., and Virgin, H.W. (2020). A perspective on potential antibody-dependent enhancement of SARSCoV-2. Nature 584, 353-363. https://doi.org/10.1038/s41586-020-2538-8
- Atyeo, C., Fischinger, S., Zohar, T., Slein, M.D., Burke, J., Loos, C., McCulloch, D.J., Newman, K.L., Wolf, C., Yu, J., et al. (2020). Distinct early serological signatures track with SARS-CoV-2 survival. Immunity 53, 524-532.e4. https://doi.org/10.1016/j.immuni.2020.07.020
- Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael, N., Creech, C.B., et al. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403-416. https://doi.org/10.1056/NEJMoa2035389
- Barnes, C.O., Jette, C.A., Abernathy, M.E., Dam, K.A., Esswein, S.R., Gristick, H.B., Malyutin, A.G., Sharaf, N.G., Huey-Tubman, K.E., Lee, Y.E., et al. (2020). SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682-687. https://doi.org/10.1038/s41586-020-2852-1
- Bastard, P., Rosen, L.B., Zhang, Q., Michailidis, E., Hoffmann, H.H., Zhang, Y., Dorgham, K., Philippot, Q., Rosain, J., Beziat, V., et al. (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585. https://doi.org/10.1126/science.abd4585
- Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., Ni, M., Wei, Y., Mohammadi, K., Musser, B., et al. (2020a). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110-1115. https://doi.org/10.1126/science.abe2402
- Baum, A., Fulton, B.O., Wloga, E., Copin, R., Pascal, K.E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni, M., et al. (2020b). Antibody cocktail to SARS0CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014-1018. https://doi.org/10.1126/science.abd0831
- Bhadelia, N., Belkina, A.C., Olson, A., Winters, T., Urick, P., Lin, N., Rifkin, I., Kataria, Y., Yuen, R.R., Sagar, M., et al. (2021). Distinct autoimmune antibody signatures between hospitalized acute COVID-19 patients, SARS-CoV-2 convalescent individuals, and unexposed pre-pandemic controls. MedRxiv, https://doi.org/10.1101/2021.01.21.21249176
- Brouwer, P.J.M., Caniels, T.G., van der Straten, K., Snitselaar, J.L., Aldon, Y., Bangaru, S., Torres, J.L., Okba, N.M.A., Claireaux, M., Kerster, G., et al. (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 369, 643-650. https://doi.org/10.1126/science.abc5902
- Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell 182, 73-84.e16. https://doi.org/10.1016/j.cell.2020.05.025
- Castagnoli, R., Votto, M., Licari, A., Brambilla, I., Bruno, R., Perlini, S., Rovida, F., Baldanti, F., and Marseglia, G.L. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 174, 882-889. https://doi.org/10.1001/jamapediatrics.2020.1467
- Chen, P., Nirula, A., Heller, B., Gottlieb, R.L., Boscia, J., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., et al. (2021). SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med. 384, 229-237. https://doi.org/10.1056/NEJMoa2029849
- Claro, I.M., da Silva Sales, F.C., Ramundo, M.S., Candido, D.S., Silva, C.A.M., de Jesus, J.G., Manuli, E.R., de Oliveira, C.M., Scarpelli, L., Campana, G., et al. (2021). Local transmission of SARS-CoV-2 lineage B.1.1.7, Brazil, December 2020. Emerg. Infect. Dis. 27, 970-972. https://doi.org/10.3201/eid2703.210038
- Collier, D.A., De Marco, A., Ferreira, I., Meng, B., Datir, R., Walls, A.C., Kemp, S.S., Bassi, J., Pinto, D., Fregni, C.S., et al. (2021). Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021 Mar 11 [Epub]. https://doi.org/10.1038/s41586-021-03412-7
- Deng, X., Garcia-Knight, M.A., Khalid, M.M., Servellita, V., Wang, C., Morris, M.K., Sotomayor-Gonzalez, A., Glasner, D.R., Reyes, K.R., Gliwa, A.S., et al. (2021). Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. MedRxiv, https://doi.org/10.1101/2021.03.07.21252647
- Duysburgh, E., Mortgat, L., Barbezange, C., Dierick, K., Fischer, N., Heyndrickx, L., Hutse, V., Thomas, I., Van Gucht, S., Vuylsteke, B., et al. (2021). Persistence of IgG response to SARS-CoV-2. Lancet Infect. Dis. 21, 163-164. https://doi.org/10.1016/S1473-3099(20)30943-9
- Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D.S., Mishra, S., Crispim, M.A.E., Sales, F.C., Hawryluk, I., McCrone, J.T., et al. (2021). Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. MedRxiv, https://doi.org/10.1101/2021.02.26.21252554
- Fujino, T., Nomoto, H., Kutsuna, S., Ujiie, M., Suzuki, T., Sato, R., Fujimoto, T., Kuroda, M., Wakita, T., and Ohmagari, N. (2021). Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg. Infect. Dis. 27, 1243-1245.
- Gaebler, C., Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Tokuyama, M., Cho, A., Jankovic, M., Schaefer-Babajew, D., Oliveira, T.Y., et al. (2021). Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639-644. https://doi.org/10.1038/s41586-021-03207-w
- Galloway, S.E., Paul, P., MacCannell, D.R., Johansson, M.A., Brooks, J.T., MacNeil, A., Slayton, R.B., Tong, S., Silk, B.J., Armstrong, G.L., et al. (2021). Emergence of SARS-CoV-2 B.1.1.7 lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 95-99. https://doi.org/10.15585/mmwr.mm7003e2
- Garcia-Beltran, W.F., Lam, E.C., Astudillo, M.G., Yang, D., Miller, T.E., Feldman, J., Hauser, B.M., Caradonna, T.M., Clayton, K.L., Nitido, A.D., et al. (2021a). COVID-19-neutralizing antibodies predict disease severity and survival. Cell 184, 476-488.e11. https://doi.org/10.1016/j.cell.2020.12.015
- Garcia-Beltran, W.F., Lam, E.C., St Denis, K., Nitido, A.D., Garcia, Z.H., Hauser, B.M., Feldman, J., Pavlovic, M.N., Gregory, D.J., Poznansky, M.C., et al. (2021b). Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021 Mar 12 [Epub]. https://doi.org/10.1016/j.cell.2021.03.013
- Gottlieb, R.L., Nirula, A., Chen, P., Boscia, J., Heller, B., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., et al. (2021). Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325, 632-644. https://doi.org/10.1001/jama.2021.0202
- Greaney, A.J., Starr, T.N., Gilchuk, P., Zost, S.J., Binshtein, E., Loes, A.N., Hilton, S.K., Huddleston, J., Eguia, R., Crawford, K.H.D., et al. (2021). Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29, 44-57.e9. https://doi.org/10.1016/j.chom.2020.11.007
- Gudbjartsson, D.F., Norddahl, G.L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., Arnthorsson, A.O., Helgason, D., Bjarnadottir, K., Ingvarsson, R.F., et al. (2020). Humoral immune response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 383, 1724-1734. https://doi.org/10.1056/NEJMoa2026116
- Happi, A.N., Ugwu, C.A., and Happi, C.T. (2021). Tracking the emergence of new SARS-CoV-2 variants in South Africa. Nat. Med. 27, 372-373. https://doi.org/10.1038/s41591-021-01265-1
- Hartley, G.E., Edwards, E.S.J., Aui, P.M., Varese, N., Stojanovic, S., McMahon, J., Peleg, A.Y., Boo, I., Drummer, H.E., Hogarth, P.M., et al. (2020). Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci. Immunol. 5, eabf8891. https://doi.org/10.1126/sciimmunol.abf8891
- Hashem, A.M., Algaissi, A., Almahboub, S.A., Alfaleh, M.A., Abujamel, T.S., Alamri, S.S., Alluhaybi, K.A., Hobani, H.I., AlHarbi, R.H., Alsulaiman, R.M., et al. (2020). Early humoral response correlates with disease severity and outcomes in COVID-19 patients. Viruses 12, 1390. https://doi.org/10.3390/v12121390
- Heath, P.T., Galiza, E.P., Baxter, D., Boffito, M., Browne D., Burns, F., Chadwick, D.R., Clark, R., Cosgrove, C., Galloway, J., et al. (2021). Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B. 1.1. 7 variant. MedRxiv, https://doi.org/10.1101/2021.05.13.21256639
- Hirotsu, Y. and Omata, M. (2021). Discovery of a SARS-CoV-2 variant from the P. 1 lineage harboring K417T/E484K/N501Y mutations in Kofu, Japan. J. Infect. 82, 276-316. https://doi.org/10.1016/j.jinf.2021.03.013
- Hoffmann, M., Arora, P., Gross, R., Seidel, A., Hornich, B.F., Hahn, A.S., Kruger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., et al. (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021 Mar 20 [Epub]. https://doi.org/10.1016/j.cell.2021.03.036
- Ibarrondo, F.J., Fulcher, J.A., Goodman-Meza, D., Elliott, J., Hofmann, C., Hausner, M.A., Ferbas, K.G., Tobin, N.H., Aldrovandi, G.M., and Yang, O.O. (2020). Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N. Engl. J. Med. 383, 1085-1087. https://doi.org/10.1056/nejmc2025179
- Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., et al. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115-119. https://doi.org/10.1038/s41586-020-2380-z
- Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043
- Li, Q., Wu, J., Nie, J., Zhang, L., Hao, H., Liu, S., Zhao, C., Zhang, Q., Liu, H., Nie, L., et al. (2020). The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182, 1284-1294.e9. https://doi.org/10.1016/j.cell.2020.07.012
- Liu, H., Wei, P., Zhang, Q., Chen, Z., Aviszus, K., Downing, W., Peterson, S., Reynoso, L., Downey, G.P., Frankel, S.K., et al. (2021). 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to Bamlanivimab in vitro. BioRxiv, https://doi.org/10.1101/2021.02.16.431305
- Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J.F., Sahi, V., Figueroa, A., et al. (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450-456. https://doi.org/10.1038/s41586-020-2571-7
- Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H., Nishiura, K., Peng, J., Tan, Z., et al. (2019). Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158. https://doi.org/10.1172/jci.insight.123158
- Lucas, C., Klein, J., Sundaram, M., Liu, F., Wong, P., Silva, J., Mao, T., Oh, J.E., Tokuyama, M., Lu, P., et al. (2020). Kinetics of antibody responses dictate COVID-19 outcome. MedRxiv, https://doi.org/10.1101/2020.12.18.20248331
- Mahase, E. (2021). Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 372, n296. https://doi.org/10.1136/bmj.n296
- Muik, A., Wallisch, A.K., Sanger, B., Swanson, K.A., Muhl, J., Chen, W., Cai, H., Maurus, D., Sarkar, R., Tureci, O., et al. (2021). Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152-1153. https://doi.org/10.1126/science.abg6105
- Naveca, F., da Costa, C., Nascimento, V., Souza, V., Corado, A., Nascimento, F., Costa, A., Duarte, D., Silva, G., Mejia, M., et al. (2021). SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil. virological.
- Ng, K.W., Faulkner, N., Cornish, G.H., Rosa, A., Harvey, R., Hussain, S., Ulferts, R., Earl, C., Wrobel, A.G., Benton, D.J., et al. (2020). Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339-1343. https://doi.org/10.1126/science.abe1107
- Nguyen-Contant, P., Embong, A.K., Kanagaiah, P., Chaves, F.A., Yang, H., Branche, A.R., Topham, D.J., and Sangster, M.Y. (2020). S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. mBio 11, e01991-20.
- Nonaka, C.K.V., Franco, M.M., Graf, T., de Lorenzo Barcia, C.A., de Avila Mendonca, R.N., de Sousa, K.A.F., Neiva, L.M.C., Fosenca, V., Mendes, A.V.A., de Aguiar, R.S., et al. (2021). Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg. Infect. Dis. 27, 1522-1524. https://doi.org/10.3201/eid2705.210191
- Oude Munnink, B.B., Sikkema, R.S., Nieuwenhuijse, D.F., Molenaar, R.J., Munger, E., Molenkamp, R., van der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., et al. (2021). Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172-177. https://doi.org/10.1126/science.abe5901
- Oxner, R. (2020). Denmark to kill up to 17 million minks after discovering mutated coronavirus. Retrieved March 24, 2021, from https://www.npr.org/2020/11/05/931726205/denmark-to-kill-up-to-17-million-minks-after-discovering-mutated-coronavirus
- Paiva, M.H.S., Guedes, D.R.D., Docena, C., Bezerra, M.F., Dezordi, F.Z., Machado, L.C., Krokovsky, L., Helvecio, E., da Silva, A.F., Vasconcelos, L., et al. (2020). Multiple introductions followed by ongoing community spread of SARS-CoV-2 at one of the largest metropolitan areas of Northeast Brazil. Viruses 12, 1414. https://doi.org/10.3390/v12121414
- Pinto, D., Park, Y.J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., et al. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290-295. https://doi.org/10.1038/s41586-020-2349-y
- Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc, G., Moreira, E.D., Zerbini, C., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603-2615. https://doi.org/10.1056/NEJMoa2034577
- Poston, D., Weisblum, Y., Wise, H., Templeton, K., Jenks, S., Hatziioannou, T., and Bieniasz, P. (2020). Absence of SARS-CoV-2 neutralizing activity in pre-pandemic sera from individuals with recent seasonal coronavirus infection. Clin. Infect. Dis. 2020 Dec 3 [Epub]. https://doi.org/10.1093/cid/ciaa1803
- Resende, P.C., Bezerra, J.F., Vasconcelos, R.H.T., Arantes, I., Appolinario, L., Mendonca, A.C., Paixao, A.C., Rodrigues, A.C.D., Silva, T., Rocha, A.S., et al. (2021). Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020. virological.
- Rodda, L.B., Netland, J., Shehata, L., Pruner, K.B., Morawski, P.A., Thouvenel, C.D., Takehara, K.K., Eggenberger, J., Hemann, E.A., Waterman, H.R., et al. (2021). Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 184, 169-183.e17. https://doi.org/10.1016/j.cell.2020.11.029
- Roltgen, K., Powell, A.E., Wirz, O.F., Stevens, B.A., Hogan, C.A., Najeeb, J., Hunter, M., Wang, H., Sahoo, M.K., Huang, C., et al. (2020a). Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol. 5, eabe0240. https://doi.org/10.1126/sciimmunol.abe0240
- Roltgen, K., Wirz, O.F., Stevens, B.A., Powell, A.E., Hogan, C.A., Najeeb, J., Hunter, M., Sahoo, M.K., Huang, C., Yamamoto, F., et al. (2020b). SARS-CoV-2 antibody responses correlate with resolution of RNAemia but are short-lived in patients with mild illness. MedRxiv, https://doi.org/10.1101/2020.08.15.20175794
- Rubin, E.J., Baden, L.R., Abdool Karim, S.S., and Morrissey, S. (2021). Audio interview: Covid-19 in South Africa and a new SARS-CoV-2 variant. N. Engl. J. Med. 384, e14. https://doi.org/10.1056/NEJMe2100736
- Santos, J.C. and Passos, G.A. (2020). The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between Spike-ACE2 caused by the viral N501Y mutation. BioRxiv, https://doi.org/10.1101/2020.12.29.424708
- Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A.M., Stoop, J., Tete, S., Van Damme, W., Leroux-Roels, I., et al. (2021). Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N. Engl. J. Med. 2021 Jan 13 [Epub]. https://doi.org/10.1056/NEJMoa2034201
- Seow, J., Graham, C., Merrick, B., Acors, S., Pickering, S., Steel, K.J.A., Hemmings, O., O'Byrne, A., Kouphou, N., Galao, R.P., et al. (2020). Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 5, 1598-1607. https://doi.org/10.1038/s41564-020-00813-8
- Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., et al. (2020). A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120-124. https://doi.org/10.1038/s41586-020-2381-y
- Sokal, A., Chappert, P., Barba-Spaeth, G., Roeser, A., Fourati, S., Azzaoui, I., Vandenberghe, A., Fernandez, I., Meola, A., Bouvier-Alias, M., et al. (2021). Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 184, 1201-1213.e14. https://doi.org/10.1016/j.cell.2021.01.050
- Song, G., He, W.T., Callaghan, S., Anzanello, F., Huang, D., Ricketts, J., Torres, J.L., Beutler, N., Peng, L., Vargas, S., et al. (2020). Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. BioRxiv, https://doi.org/10.1101/2020.09.22.308965
- Starr, T.N., Greaney, A.J., Addetia, A., Hannon, W.W., Choudhary, M.C., Dingens, A.S., Li, J.Z., and Bloom, J.D. (2021). Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850-854. https://doi.org/10.1126/science.abf9302
- Sterlin, D., Mathian, A., Miyara, M., Mohr, A., Anna, F., Claer, L., Quentric, P., Fadlallah, J., Devilliers, H., Ghillani, P., et al. (2021). IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223. https://doi.org/10.1126/scitranslmed.abd2223
- Tan, W., Lu, Y., Zhang, J., Wang, J., Dan, Y., Tan, Z., He, X., Qian, C., Sun, Q., Hu, Q., et al. (2020). Viral kinetics and antibody responses in patients with COVID-19. MedRxiv, https://doi.org/10.1101/2020.03.24.20042382
- Tegally, H., Wilkinson, E., Lessells, R.J., Giandhari, J., Pillay, S., Msomi, N., Mlisana, K., Bhiman, J.N., von Gottberg, A., Walaza, S., et al. (2021). Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 27, 440-446. https://doi.org/10.1038/s41591-021-01255-3
- Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., et al. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9, 382-385. https://doi.org/10.1080/22221751.2020.1729069
- Voysey, M., Clemens, S.A.C., Madhi, S.A., Weckx, L.Y., Folegatti, P.M., Aley, P.K., Angus, B., Baillie, V.L., Barnabas, S.L., Bhorat, Q.E., et al. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99-111. https://doi.org/10.1016/S0140-6736(20)32661-1
- Wajnberg, A., Amanat, F., Firpo, A., Altman, D.R., Bailey, M.J., Mansour, M., McMahon, M., Meade, P., Mendu, D.R., Muellers, K., et al. (2020). Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370, 1227-1230. https://doi.org/10.1126/science.abd7728
- Wang, E.Y., Mao, T., Klein, J., Dai, Y., Huck, J.D., Liu, F., Zheng, N.S., Zhou, T., Israelow, B., Wong, P., et al. (2020). Diverse functional autoantibodies in patients with COVID-19. MedRxiv, https://doi.org/10.1101/2020.12.10.20247205
- Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Viant, C., Gaebler, C., Cipolla, M., Hoffmann, H.H., Oliveira, T.Y., Oren, D.A., et al. (2021a). Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13, eabf1555. https://doi.org/10.1126/scitranslmed.abf1555
- Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C.O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J.A., et al. (2021b). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616-622. https://doi.org/10.1038/s41586-021-03324-6
- Weissman, D., Alameh, M.G., de Silva, T., Collini, P., Hornsby, H., Brown, R., LaBranche, C.C., Edwards, R.J., Sutherland, L., Santra, S., et al. (2021). D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23-31.e4. https://doi.org/10.1016/j.chom.2020.11.012
- Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B.E., de Oliveira, T., Vermeulen, M., van der Berg, K., et al. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622-625. https://doi.org/10.1038/s41591-021-01285-x
- Woodruff, M.C., Ramonell, R.P., Lee, F.E.H., and Sanz, I. (2020a). Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. MedRxiv, https://doi.org/10.1101/2020.10.21.20216192
- Woodruff, M.C., Ramonell, R.P., Nguyen, D.C., Cashman, K.S., Saini, A.S., Haddad, N.S., Ley, A.M., Kyu, S., Howell, J.C., Ozturk, T., et al. (2020b). Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506-1516. https://doi.org/10.1038/s41590-020-00814-z
- Wu, K., Werner, A.P., Moliva, J.I., Koch, M., Choi, A., Stewart-Jones, G.B.E., Bennett, H., Boyoglu-Barnum, S., Shi, W., Graham, B.S., et al. (2021). mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. BioRxiv, https://doi.org/10.1101/2021.01.25.427948
- Xie, X., Liu, Y., Liu, J., Zhang, X., Zou, J., Fontes-Garfias, C.R., Xia, H., Swanson, K.A., Cutler, M., Cooper, D., et al. (2021). Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat. Med. 27, 620-621. https://doi.org/10.1038/s41591-021-01270-4
- Yadav, P.D., Gupta, N., Nyayanit, D.A., Sahay, R.R., Shete, A.M., Majumdar, T., Patil, S., Kaur, H., Nikam, C., Pethani, J., et al. (2021). Imported SARS-CoV-2 V501Y. V2 variant (B. 1.351) detected in travelers from South Africa and Tanzania to India. Travel Med. Infect. Dis. 41, 102023. https://doi.org/10.1016/j.tmaid.2021.102023
- Zhang, J., Wu, Q., Liu, Z., Wang, Q., Wu, J., Hu, Y., Bai, T., Xie, T., Huang, M., Wu, T., et al. (2021). Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nat. Microbiol. 6, 51-58. https://doi.org/10.1038/s41564-020-00824-5
- Zhang, W., Davis, B.D., Chen, S.S., Martinez, J.M.S., Plummer, J.T., and Vail, E. (2021). Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325, 1324-1326. https://doi.org/10.1001/jama.2021.1612
- Zhao, J.J., Yuan, Q., Wang, H.Y., Liu, W., Liao, X.J., Su, Y.Y., Wang, X., Yuan, J., Li, T.D., Li, J.X., et al. (2020). Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 71, 2027-2034. https://doi.org/10.1093/cid/ciaa344
- Zhu, Y., Yu, D., Han, Y., Yan, H., Chong, H., Ren, L., Wang, J., Li, T., and He, Y. (2020). Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Sci. Adv. 6, eabc9999. https://doi.org/10.1126/sciadv.abc9999
- Zohar, T., Loos, C., Fischinger, S., Atyeo, C., Wang, C., Slein, M.D., Burke, J., Yu, J., Feldman, J., Hauser, B.M., et al. (2020). Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell 183, 1508-1519.e12. https://doi.org/10.1016/j.cell.2020.10.052
- Zost, S.J., Gilchuk, P., Case, J.B., Binshtein, E., Chen, R.E., Nkolola, J.P., Schafer, A., Reidy, J.X., Trivette, A., Nargi, R.S., et al. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443-449. https://doi.org/10.1038/s41586-020-2548-6
- Zou, J., Xie, X., Fontes-Garfias, C.R., Swanson, K.A., Kanevsky, I., Tompkins, K., Cutler, M., Cooper, D., Dormitzer, P.R., and Shi, P.Y. (2021). The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization. NPJ Vaccines 6, 44. https://doi.org/10.1038/s41541-021-00313-8
- Zuniga, M., Gomes, C., Carsons, S.E., Bender, M.T., Cotzia, P., Miao, Q.R., Lee, D.C., and Rodriguez, A. (2021). Autoimmunity to the lung protective phospholipid-binding protein Annexin A2 predicts mortality among hospitalized COVID-19 patients. MedRxiv, https://doi.org/10.1101/2020.12.28.20248807
Cited by
- Humoral immune response to SARS-CoV-2 in five different groups of individuals at different environmental and professional risk of infection vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-04279-4