DOI QR코드

DOI QR Code

3T3-L1 및 B16F10 세포에서 청각 메탄올 추출물에 의한 지방 세포 분화 및 멜라닌 생성의 억제 효과

Inhibition of adipogenesis and melanogenesis by methanol extract of Codium fragile (Suringar) Hariot in 3T3-L1 adipocytes and B16F10 melanocytes

  • 최은옥 (동의대학교 항노화연구소) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 황혜진 (동의대학교 의료.보건.생활대학 식품영양학과)
  • Choi, Eun-Ok (Anti-Aging Research Center, Dongeui University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Korean Medicine, Dong-eui University) ;
  • Hwang, Hye-Jin (Department of Food and Nutrition, Dong-eui University)
  • 투고 : 2021.05.10
  • 심사 : 2021.05.17
  • 발행 : 2021.06.30

초록

Codium fragile (Suringar) Hariot, a green alga of the Codiales family, has been reported to have several bioactive properties, including antioxidant and anti-inflammatory properties. However, its antiobesity and whitening effects and their underlying mechanisms are unclear. This study aimed to evaluate the antiobesity and melanogenesis inhibitory effects of C. fragile using methanol extracts of C. fragile (MECF). The results of this study revealed that MECF inhibited the accumulation of lipid droplets and triacylglycerol in differentiated 3T3-L1 adipocytes, which was associated with the inhibition of the expression of adipogenesis-related transcription factors, such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein-α (C/EBPα), and C/EBPβ, which function as the key regulators of adipogenesis. Also, MECF reduced tyrosinase activity and melanin content in B16F10 cells as well as the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-related transcription factor in the presence of α-melanocyte-stimulating hormone. Taken together, our findings suggest that the extract of C. fragile could be considered a promising functional ingredient for the prevention and treatment of obesity and skin pigmentation in the food and cosmetic industry.

키워드

참고문헌

  1. Hodson, L., Rosqvist, F., Parry, S. A. 2020. The influence of dietary fatty acids on liver fat content and metabolism. Proc. Nutr. Soc. 79, 30-41. https://doi.org/10.1017/s0029665119000569
  2. Westerterp, K. R. 2018. Exercise, energy balance and body composition. Eur. J. Clin. Nutr. 72, 1246-1250. https://doi.org/10.1038/s41430-018-0180-4
  3. Peyton, K. J., Liu, X .M., Shebib, A. R., Johnson, F. K., Johnson, R. A., Durante, W. 2018. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 50, 747-754. https://doi.org/10.1007/s00726-018-2567-x
  4. Koenen, M., Hill, M. A., Cohen, P., Sowers, J. R. 2021. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951-968. https://doi.org/10.1161/CIRCRESAHA.121.318093
  5. Dias, S., Paredes, S., Ribeiro, L. 2018. Drugs Involved in dyslipidemia and obesity treatment: Focus on adipose tissue. Int. J. Endocrinol. 2018, 2637418. https://doi.org/10.1155/2018/2637418
  6. Rajjo, T., Mohammed, K., Alsawas, M., Ahmed, A. T., Farah, W., Asi, N., Almasri, J., Prokop, L. J., Murad, M. H. 2017. Treatment of pediatric obesity: An umbrella systematic review. J. Clin. Endocrinol. Metab. 102, 763-775. https://doi.org/10.1210/jc.2016-2574
  7. Kumar, A., Chauhan, S. 2021. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sci. 271, 119115. https://doi.org/10.1016/j.lfs.2021.119115
  8. Narayanaswami, V., Dwoskin, L. P. 2017. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol. Ther. 170, 116-147. https://doi.org/10.1016/j.pharmthera.2016.10.015
  9. Siebenhofer, A., Jeitler, K., Horvath, K., Berghold, A., Posch, N., Meschik, J., Semlitsch, T. 2016. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane. Database Syst. Rev. 3, CD007654.
  10. Krentz, A. J., Fujioka, K., Hompesch, M. 2016. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes. Metab. 18, 558-570. https://doi.org/10.1111/dom.12657
  11. Desmedt, B., Courselle, P., De Beer, J. O., Rogiers, V., Grosber, M., Deconinck, E., De Paepe, K. 2016. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J. Eur. Acad. Dermatol. Venereol. 30, 943-950. https://doi.org/10.1111/jdv.13595
  12. Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., Su, H. 2020. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp. Ther. Med. 20, 173-185. https://doi.org/10.3892/etm.2020.8687
  13. Costin, G. E., Hearing, V. J. 2007. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994. https://doi.org/10.1096/fj.06-6649rev
  14. Ohbayashi, N., Fukuda, M. 2020. Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000Res 9 F1000.
  15. Pillaiyar, T., Manickam, M., Jung, S. H. 2017. Recent development of signaling pathways inhibitors of melanogenesis. Cell. Signal. 40, 99-115. https://doi.org/10.1016/j.cellsig.2017.09.004
  16. Pillaiyar, T., Namasivayam, V., Manickam, M., Jung, S. H. 2018. Inhibitors of melanogenesis: An updated review. J. Med. Chem. 61, 7395-7418. https://doi.org/10.1021/acs.jmedchem.7b00967
  17. Smit, N., Vicanova, J., Pavel, S. 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10, 5326-5349. https://doi.org/10.3390/ijms10125326
  18. Draelos, Z. D. 2007. Skin lightening preparations and the hydroquinone controversy. Dermatol. Ther. 20, 308-313. https://doi.org/10.1111/j.1529-8019.2007.00144.x
  19. Ramos-Romero, S., Torrella, J. R., Pages, T., Viscor, G., Torres, J. L. 2021. Edible microalgae and their bio-active compounds in the prevention and treatment of metabolic alterations. Nutrients 13, 563. https://doi.org/10.3390/nu13020563
  20. Thiyagarasaiyar, K., Goh, B. H., Jeon, Y. J., Yow, Y. Y. 2020. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar. Drugs 18, 323. https://doi.org/10.3390/md18060323
  21. Muhamad, I. I., Zulkifli, N., Selvakumaran, S. A., Lazim, N. A. M. 2019. Bioactive algal-derived polysaccharides: Multi-functionalization, therapeutic potential and biomedical applications. Curr. Pharm. Des. 25, 1147-1162. https://doi.org/10.2174/1381612825666190618152133
  22. Wan-Loy, C., Siew-Moi, P. 2016. Marine algae as a potential source for anti-obesity agents. Mar. Drugs 14, 222. https://doi.org/10.3390/md14120222
  23. Sanjeewa, K. K. A., Lee, W., Jeon, Y.-J. 2018. Nutrients and bioactive potentials of edible green and red seaweed in Korea. Fish. Aquat. Sci. 21, 19. https://doi.org/10.1186/s41240-018-0095-y
  24. Kim, E., Cui, J., Kang, I., Zhang, G., Lee, Y. 2021. Potential antidiabetic effects of seaweed extracts by up-regulating glucose utilization and alleviating inflammation in C2C12 myotubes. Int. J. Environ. Res. Public Health 18, 1367. https://doi.org/10.3390/ijerph18031367
  25. Monmai, C., Rod-In, W., Jang, A. Y., Lee, S. M., Jung, S. K., You, S., Park, W. J. 2020. Immune-enhancing effects of anionic macromolecules extracted from Codium fragile coupled with arachidonic acid in RAW264.7 cells. PLoS One 15, e0239422. https://doi.org/10.1371/journal.pone.0239422
  26. Lee, C., Park, G. H., Ahn, E. M., Kim, B. A., Park, C. I., Jang, J. H. 2013. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia 86, 54-63. https://doi.org/10.1016/j.fitote.2013.01.020
  27. Lee, S. A., Moon, S. M., Choi, Y. H., Han, S. H., Park, B. R., Choi, M. S., Kim, J. S., Kim, Y. H., Kim, D. K., Kim, C. S. 2017. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenan-induced rats. Biomed. Pharmacother. 93, 1055-1064. https://doi.org/10.1016/j.biopha.2017.07.026
  28. Kang, C. H., Choi, Y. H., Park, S. Y., Kim, G. Y. 2012. Anti-inflammatory effects of methanol extract of Codium fragile in lipopolysaccharide-stimulated RAW 264.7 cells. J. Med. Food. 15, 44-50. https://doi.org/10.1089/jmf.2010.1540
  29. Kolsi, R. B. A., Jardak, N., Hajkacem, F., Chaaben, R., Jribi, I., Feki, A. E., Rebai, T., Jamoussi, K., Fki, L., Belghith, H., Belghith, K. 2017. Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int. J. Biol. Macromol. 102, 119-129. https://doi.org/10.1016/j.ijbiomac.2017.04.017
  30. Le Lay, S., Dugail, I. 2009. Connecting lipid droplet biology and the metabolic syndrome. Prog. Lipid Res. 48, 191-195. https://doi.org/10.1016/j.plipres.2009.03.001
  31. Padilla-Benavides, T., Velez-delValle, C., Marsch-Moreno, M., Castro-Munozledo, F., Kuri-Harcuch, W. 2016. Lipogenic enzymes complexes and cytoplasmic lipid droplet formation during adipogenesis. J. Cell Biochem. 117, 2315-2326. https://doi.org/10.1002/jcb.25529
  32. Yang, X., Heckmann, B. L., Zhang, X., Smas, C. M., Liu, J. 2013. Distinct mechanisms regulate ATGL-mediated adipocyte lipolysis by lipid droplet coat proteins. Mol. Endocrinol. 27, 116-126. https://doi.org/10.1210/me.2012-1178
  33. Ali, A. T., Hochfeld, W. E., Myburgh, R., Pepper, M. S. 2013. Adipocyte and adipogenesis. Eur. J. Cell Biol. 92, 229-236. https://doi.org/10.1016/j.ejcb.2013.06.001
  34. Spiegelman, B. M., Flier, J. S. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  35. Muruganandan, S., Ionescu, A. M., Sinal, C. J. 2020. At the crossroads of the adipocyte and osteoclast differentiation programs: Future therapeutic perspectives. Int. J. Mol. Sci. 21, 2277. https://doi.org/10.3390/ijms21072277
  36. Rosen, E. D., Walkey, C. J., Puigserver, P., Spiegelman, B.M. 2020. Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293-1307.
  37. Serre, C., Busuttil, V., Botto, J. M. 2018. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 40, 328-347. https://doi.org/10.1111/ics.12466
  38. Rzepka, Z., Buszman, E., Beberok, A., Wrzesniok, D. 2016. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Hig. Med. Dosw (Online). 70, 695-708. https://doi.org/10.5604/17322693.1208033
  39. D'Mello, S. A., Finlay, G. J., Baguley, B. C., Askarian-Amiri, M. E. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1144. https://doi.org/10.3390/ijms17071144
  40. Wan, P., Hu, Y., He, L. 2011. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol. Cell. Biochem. 354, 241-246. https://doi.org/10.1007/s11010-011-0823-4
  41. Schallreuter, K. U. 2007. Advances in melanocyte basic science research. Dermatol. Clin. 25, 283-291, https://doi.org/10.1016/j.det.2007.04.010