DOI QR코드

DOI QR Code

Magnetoelectric Polymer Composites

자기전기 고분자 복합체

  • Ko, Kyujin (Department of Chemical Engineering, Dong-A University) ;
  • Noh, Byung-Il (Department of Chemical Engineering, Dong-A University) ;
  • Yang, Su-Chul (Department of Chemical Engineering, Dong-A University)
  • 고규진 (동아대학교 화학공학과(BK21 FOUR)) ;
  • 노병일 (동아대학교 화학공학과(BK21 FOUR)) ;
  • 양수철 (동아대학교 화학공학과(BK21 FOUR))
  • Received : 2021.04.20
  • Accepted : 2021.04.30
  • Published : 2021.07.01

Abstract

Since 2010, polymer-based magnetoelectric (ME) composites have been developed with detailed investigations of multiferroic properties such as piezoelectric, magnetostrictive, and magnetoelectric, etc. In particular, as a piezoelectric polymer, poly(vinylidene fluoride) and its co-polymers have been widely used in ME composites for energy harvesting, health monitoring, environment treatment, and bio-medical applications. In this study, main research trend and selected experimental results of polymer-based ME composites are briefly reviewed with respect to composite structure as well as application field. A conclusion was drawn that the polymer-based ME composites would be feasible as flexible devices or functional membranes in the near future.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2019R1F1A1056786).

References

  1. L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, J. Phys.: Condens. Matter, 20, 434220 (2008). [DOI: https://doi.org/10.1088/0953-8984/20/43/434220]
  2. M.G.A. Ranieri, P. P. Ortega, H. Moreno, M. A. Ramirez, E. C. Aguiar, and A. Z. Simoes, J. Alloys Compd., 851, 156936 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2020.156936]
  3. Q. Li, B. Wang, Q. He, P. Yu, L. Q. Chen, S. V. Kalinin, and J. F. Li, Nano Lett., 21, 445 (2021). [DOI: https://doi.org/10.1021/acs.nanolett.0c03875]
  4. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 442, 759 (2006). [DOI: https://doi.org/10.1038/nature05023]
  5. K. Ko and S. C. Yang, Thin Solid Films, 689, 137525 (2019). [DOI: https://doi.org/10.1016/j.tsf.2019.137525]
  6. J. M. Hu, L. Q. Chen, and C. W. Nan, Adv. Mater., 28, 15 (2016). [DOI: https://doi.org/10.1002/adma.201502824]
  7. P. P. Lu, J. X. Shen, D. S. Shang, and Y. Sun, ACS Appl. Mater. Interfaces, 12, 4673 (2020). [DOI: https://doi.org/10.1021/acsami.9b19510]
  8. S. H. Ji, Y. S. Cho, and J. S. Yun, Nanomaterials, 9, 555 (2019). [DOI: https://doi.org/10.3390/nano9040555]
  9. J. Zhu, Y. Wang, and X. Qing, Nanomaterials, 9, 1268 (2019). [DOI: https://doi.org/10.3390/nano9091268]
  10. A. Singer, S. Dutta, E. Lewis, Z. Chen, J. C. Chen, N. Verma, B. Avants, A. K. Feldman, J. O'Malley, M. Beierlein, C. Kemere, and J. T. Robinson, Neuron, 107, 631 (2020). [DOI: https://doi.org/10.1016/j.neuron.2020.05.019]
  11. Y. Wang, J. Hu, Y. Lin, and C. W. Nan, NPG Asia Mater., 2, 61 (2010). [DOI: https://doi.org/10.1038/asiamat.2010.32]
  12. S. C. Yang, K. H. Cho, C. S. Park, and S. Priya, Appl. Phys. Lett., 99, 202904 (2011). [DOI: https://doi.org/10.1063/1.3662420]
  13. R. Guduru, P. Liang, C. Runowicz, M. Nair, V. Atluri, and S. Khizroev, Sci. Rep., 3, 2953 (2013). [DOI: https://doi.org/10.1038/srep02953]
  14. Y. Wang, J. Li, and D. Viehland, Mater. Today, 17, 269 (2014). [DOI: https://doi.org/10.1016/j.mattod.2014.05.004]
  15. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 299, 1719 (2003). [DOI: https://doi.org/10.1126/science.1080615]
  16. C.A.F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Adv. Mater., 22, 2900 (2010). [DOI: https://doi.org/10.1002/adma.200904326]
  17. S. M. Jang, M. I. Bichurin, and S. C. Yang, Mater. Res. Bull., 91, 197 (2017). [DOI: https://doi.org/10.1016/j.materresbull.2017.03.059]
  18. J. Irwin, S. Lindemann, W. Maeng, J. J. Wang, V. Vaithyanathan, J. M. Hu, L. Q. Chen, D. G. Schlom, C. B. Eom, and M. S. Rzchowski, Sci. Rep., 9, 19158 (2019). [DOI: https://doi.org/10.1038/s41598-019-55139-1]
  19. R. C. Kambale, P. A. Shaikh, C. H. Bhosale, K. Y. Rajpure, and Y. D. Kolekar, J. Alloys Compd., 489, 310 (2010). [DOI: https://doi.org/10.1016/j.jallcom.2009.09.080]
  20. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, J. Electroceram., 7, 17 (2001). [DOI: https://doi.org/10.1023/a:1012210609895]
  21. F. E. Pinkerton, J. F. Herbst, C. H. Olk, M. S. Meyer, and J. J. Moleski, J. Magn. Magn. Mater., 241, 162 (2002). [DOI: https://doi.org/10.1016/S0304-8853(01)00166-4]
  22. R. C. Kambale, P. A. Shaikh, Y. D. Kolekar, C. H. Bhosale, and K. Y. Rajpure, Mater. Lett., 64, 520 (2010). [DOI: https://doi.org/10.1016/j.matlet.2009.11.064]
  23. C. Deng, Y. Zhang, J. Ma, Y. Lin, and C. W. Nan, Acta Mater., 56, 405 (2008). [DOI: https://doi.org/10.1016/j.actamat.2007.10.004]
  24. J. Ryu, C. W. Baek, G. Han, C. S. Park, J. W. Kim, and B. D. Hahn, W. H. Yoon, D. S. Park, S. Priya, and D. Y. Jeong, Ceram. Int., 38, S431 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2011.05.027]
  25. R. A. Islam, Y. Ni, A. G. Khachaturyan, and S. Priya, J. Appl. Phys., 104, 044103 (2008). [DOI: https://doi.org/10.1063/1.2966597]
  26. W. Chen, Z. H. Wang, W. Zhu, and O. K. Tan, J. Phys. D: Appl. Phys., 42, 075421 (2009). [DOI: https://doi.org/10.1088/0022-3727/42/7/075421]
  27. D. V. Chashin, Y. K. Fetisov, K. E. Kamentsev, and G. Srinivasan, Appl. Phys. Lett., 92, 102511 (2008). [DOI: https://doi.org/10.1063/1.2896607]
  28. M. Rafique, A. Herklotz, K. Dorr, and S. Manzoor, Appl. Phys. Lett., 110, 202902 (2017). [DOI: https://doi.org/10.1063/1.4983357]
  29. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh, Nat. Mater., 2, 43 (2003). [DOI: https://doi.org/10.1038/nmat800]
  30. S. Ribeiro, C. Puckert, C. Ribeiro, A. C. Gomes, M. J. Higgins, and S. Lanceros-Mendez, ACS Appl. Mater. Interfaces, 12, 191 (2020). [DOI: https://doi.org/10.1021/acsami.9b17222]
  31. D. C. Zhu, S. Roy, Z. Liu, H. Weller, W. J. Parak, and N. Feliu, Adv. Drug Delivery Rev., 138, 117 (2019). [DOI: https://doi.org/10.1016/j.addr.2018.10.003]
  32. J. M. Hu and C. W. Nan, APL Mater., 7, 080905 (2019). [DOI: https://doi.org/10.1063/1.5112089]
  33. G. T. Hwang, Y. Kim, J. H. Lee, S. Oh, C. K. Jeong, D. Y. Park, J. Ryu, H. S. Kwon, S. G. Lee, B. Joung, D. Kim, and K. J. Lee, Energy Environ. Sci., 8, 2677 (2015). [DOI: https://doi.org/10.1039/c5ee01593f]
  34. B. -I. Noh and S. C. Yang, Mater. Lett., 242, 183 (2019). [DOI: https://doi.org/10.1016/j.matlet.2019.01.111]
  35. D. Olvera and M. G. Monaghan, Adv. Drug Delivery Rev., 170, 396 (2021). [DOI: https://doi.org/10.1016/j.addr.2020.09.011]
  36. S. C. Yang, C. S. Park, K. H. Cho, and S. Priya, J. Appl. Phys., 108, 093706 (2010). [DOI: https://doi.org/10.1063/1.3493154]
  37. F. Narita and M. Fox, Adv. Eng. Mater., 20, 1700743 (2018). [DOI: https://doi.org/10.1002/adem.201700743]
  38. M. T. Chorsi, E. J. Curry, H. T. Chorsi, R. Das, J. Baroody, P. K. Purohit, H. Ilies, and T. D. Nguyen, Adv. Mater., 31, 1802084 (2019). [DOI: https://doi.org/10.1002/adma.201802084]
  39. Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, Nano Lett., 10, 524 (2010). [DOI: https://doi.org/10.1021/nl903377u]
  40. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers, 10, 228 (2018). [DOI: https://doi.org/10.3390/polym10030228]
  41. T. Wu, H. Jin, S. Dong, W. Xuan, H. Xu, L. Lu, Z. Fang, S. Huang, X. Tao, L. Shi, S. Liu, and J. Luo, Sensors, 20, 1346 (2020). [DOI: https://doi.org/10.3390/s20051346]
  42. X. Jiang, X. Zhao, G. Peng, W. Liu, K. Liu, and Z. Zhan, Curr. Appl. Phys., 17, 15 (2017). [DOI: https://doi.org/10.1016/j.cap.2016.10.011]
  43. P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci., 39, 683 (2014). [DOI: https://doi.org/10.1016/j.progpolymsci.2013.07.006]
  44. V. Cauda, S. Stassi, K. Bejtka, and G. Canayese, ACS Appl. Mater. Interfaces, 5, 6430 (2013). [DOI: https://doi.org/10.1021/am4016878]
  45. Y. Xie, Y. Yu, Y. Feng, W. Jiang, and Z. Zhang, ACS Appl. Mater. Interfaces, 9, 2995 (2017). [DOI: https://doi.org/10. 1021/acsami.6b14166] https://doi.org/10.1021/acsami.6b14166
  46. M. Benz, W. B. Euler, and O. J. Gregory, Macromolecules, 35, 2682 (2002). [DOI: https://doi.org/10.1021/ma011744f]
  47. S. Priya, R. Islam, S. Dong, and D. Viehland, J. Electroceram., 19, 149 (2007). [DOI: https://doi.org/10.1007/s10832-007-9042-5]
  48. R. Zhao, Y. Kim, S. A. Chester, P. Sharma, and X. Zhao, J. Mech. Phys. Solids, 124, 244 (2019). [DOI: https://doi.org/10.1016/j.jmps.2018.10.008]
  49. O. Gutfleisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater., 23, 821 (2011). [DOI: https://doi.org/10.1002/adma.201002180]
  50. L. Chen and Y. Wang, Smart Mater. Struct., 28, 045003 (2019). [DOI: https://doi.org/10.1088/1361-665X/ab04cd]
  51. M. H. Choi, K. Ko, and S. C. Yang, Materials, 12, 1053 (2019). [DOI: https://doi.org/10.3390/ma12071053]
  52. Y. Zhou, D. Maurya, Y. Yan, G. Srinivasan, E. Quandt, and S. Priya, Energy Harvesting Syst., 3, 1 (2016). [DOI: https://doi.org/10.1515/ehs-2015-0003]
  53. P. Martins and S. Lanceros-Mendez, Appl. Mater. Today, 15, 558 (2019). [DOI: https://doi.org/10.1016/j.apmt.2019.04.004]
  54. Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, and D. Viehland, Adv. Mater., 23, 4111 (2011). [DOI: https://doi.org/10.1002/adma.201100773]
  55. J. F. Tressler, S. Alkoy, A. Dogan, and R. E. Newnham, Composites Part A, 30, 477 (1999). [DOI: https://doi.org/10.1016/S1359-835X(98)00137-7]
  56. M. H. Choi and S. C. Yang, Mater. Lett., 223, 73 (2018). [DOI: https://doi.org/10.1016/j.matlet.2018.04.024]
  57. N. Cai, J. Zhai, C. W. Nan, Y. Lin, and Z. Shi, Phys. Rev. B, 68, 224103 (2003). [DOI: https://doi.org/10.1103/PhysRevB.68.224103]
  58. A. Ahlawat, S. Satapathy, R. J. Choudhary, M. M. Shirolkar, M. K. Singh, and P. K. Gupta, RSC Adv., 6, 44843 (2016). [DOI: https://doi.org/10.1039/c6ra01152g]
  59. Y. Long, J. Qiu, X. He, Q. Chang, Z. Hu, and H. Liu, AIP Adv., 7, 125029 (2017). [DOI: https://doi.org/10.1063/1.5013235]
  60. J. Feng, S. Xuan, L. Ding, and X. Gong, Composites Part A, 103, 25 (2017). [DOI: https://doi.org/10.1016/j.compositesa.2017.09.004]
  61. P. Lu, D. Shang, J. Shen, Y. Chai, C. Yang, K. Zhai, J. Cong, S. Shen, and Y. Sun, Appl. Phys. Lett., 109, 5 (2016). [DOI: https://doi.org/10.1063/1.4972304]
  62. K. Ko and S. C. Yang, Polymers, 12, 2601 (2020). [DOI: https://doi.org/10.3390/polym12112601]
  63. D. Ponnamma, O. Aljarod, H. Parangusan, and M.A.A. Al-Maadeed, Mater. Chem. Phys., 239, 122257 (2020). [DOI: https://doi.org/10.1016/j.matchemphys.2019.122257]
  64. F. Mushtaq, H. Torlakcik, Q. Vallmajo-Martin, E. C. Siringil, J. H. Zhang, C. Rohrig, Y. Shen, Y. Yu, X. Z. Chen, R. Muller, B. J. Nelson, and S. Pane, Appl. Mater. Today, 16, 290 (2019). [DOI: https://doi.org/10.1016/j.apmt.2019.06.004]
  65. H. Wu, X. Zhang, Z. Ma, C. Zhang, J. Ai, P. Chen, C. Yan, B. Su, and Y. Shi, Adv. Sci., 7, 1903208 (2020). [DOI: https://doi.org/10.1002/advs.201903208]
  66. M. Alnassar, A. Alfadhel, Y. P. Ivanov, and J. Kosel, J. Appl. Phys., 117, 17D711 (2015). [DOI: https://doi.org/10.1063/1.4913943]
  67. P. Martins, M. Silva, S. Reis, N. Pereira, H. Amorin, and S. Lanceros-Mendez, Polymers, 9, 62 (2017). [DOI: https://doi.org/10.3390/polym9020062]
  68. X. W. Dong, B. Wang, K. F. Wang, J. G. Wan, and J. M. Liu, Sens. Actuators, A, 153, 64 (2009). [DOI: https://doi.org/10.1016/j.sna.2009.04.033]
  69. P. D. Prasad and J. Hemalatha, Phys. B, 573, 1 (2019). [DOI: https://doi.org/10.1016/j.physb.2019.08.023]
  70. R. Goncalves, A. Larrea, M. S. Sebastian, V. Sebastian, P. Martins, and S. Lanceros-Mendez, J. Mater. Chem. C, 4, 10701 (2016). [DOI: https://doi.org/10.1039/c6tc04188d]
  71. R. Goncalves, A. Larrea, T. Zheng, M. J. Higgins, V. Sebastian, S. Lanceros-Mendez, and P. Martins, Eur. Polym. J., 84, 685 (2016). [DOI: https://doi.org/10.1016/j.eurpolymj.2016.09.055]
  72. X. He, J. Qiu, Y. Long, Q. Chang, Z. Hu, H. B. Liu, W. Hu, Y. She, and X. Tang, Ceram. Int., 44, S100 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2018.08.228]
  73. S. K. Ghosh, K. Roy, H. K. Mishra, M. R. Sahoo, B. Mahanty, P. N. Vishwakarma, and D. Mandal, ACS Sustainable Chem. Eng., 8, 864 (2020). [DOI: https://doi.org/10.1021/acssuschemeng.9b05058]
  74. T. Zheng, Z. Yue, G. G. Wallace, Y. Du, and M. J. Higgins, Nanotechnology, 31, 375708 (2020). [DOI: https://doi.org/10.1088/1361-6528/ab96e3]
  75. A. Samadi and S. Pourahmad, Int. J. Energy Res., 44, 10087 (2020). [DOI: https://doi.org/10.1002/er.5623]
  76. X. Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Ozkale, Q. Li, E. Siringil, F. Mushtaq, L. D. Tizio, B. J. Nelson, and S. Pane, Adv. Mater., 29, 1605458 (2017). [DOI: https://doi.org/10.1002/adma.201605458]
  77. C. Ribeiro, V. Correia, P. Martins, F. M. Gama, and S. Lanceros-Mendez, Colloids Surf., B, 140, 430 (2016). [DOI: https://doi.org/10.1016/j.colsurfb.2015.12.055]
  78. M. M. Fernandes, P. Martins, D. M. Correia, E. O. Carvalho, F. M. Gama, M. Vazquez, C. Bran, and S. Lanceros-Mendez, ACS Appl. Bio Mater., 4, 559 (2021). [DOI: https://doi.org/10.1021/acsabm.0c01125]