DOI QR코드

DOI QR Code

Synthesis, Characterization and in vitro Antibacterial Studies on Mixed Ligand Complexes of Iron(III) Based on 1,10-phenanthroline

  • Received : 2021.02.07
  • Accepted : 2021.03.03
  • Published : 2021.06.20

Abstract

As part of our attempt to discover novel active compounds against multi-drug resistant pathogens, we hereby report two new complexes of iron(III) with formulae: [Fe(L1)2(H2O)2]Cl3 and [Fe(L1)2(L2)(H2O)]Cl2 where L1 = 1,10-phenanthroline (C12H8N2) and L2 = guanide (C5H4N5O-). The synthesized complexes were characterized using spectroscopic analysis (ESI-MS, ICP-OES, FT-IR, and UV-Vis), cyclic voltammetry, CHN analysis, gravimetric chloride determination, melting point determination, and conductance measurement. Octahedral geometries are assigned to both complexes. In vitro antibacterial activity was tested on two Gram-positive (Staphylococcus aureus, Streptococcus epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria using the disc diffusion method. The complexes demonstrated appreciable activity against these pathogens. Interestingly, the [Fe(L1)2(L2)(H2O)]Cl2 complex manifested a higher degree of inhibition against the drug-resistant Gram-negative bacteria than the commercially available drug, namely erythromycin.

Keywords

Acknowledgement

The authors express sincere gratitude to Bahir Dar University for providing the necessary facilities. We thank Dr.Yonas Beyene for running CV at the electroanalytical laboratory, Bahir Dar University, Ethiopia. We also thank Academia Sinica, Institute of Chemistry, for allowing us to run ESI-MS and EA in Taiwan. And the Publication cost of this paper was supported by the Korean Chemical Society.

References

  1. Rafique, S.; Idrees, M.; Nasim, A.; Akbar, H.; Athar, A. Biotechnol. Mol. Biol. Rev. 2010, 5, 38.
  2. Abu-Dief, A. M.; Abdel-Rahman, L. H.; Shehata, M. R.; Abdel-Mawgoud, A. A. H. J. Phys. Org. Chem. 2019, 32, e4009. https://doi.org/10.1002/poc.4009
  3. Mukherjee, T.; Pessoa, J. C.; Kumar, A.; Sarkar, A. R.; Dalton Trans. 2013, 42, 2594. https://doi.org/10.1039/c2dt31575k
  4. Weder, J. E.; Dillon, C. T.; Hambley, T. W.; Kennedy, B. J.; Lay, P. A.; Biffin, J. R.; Davies, N. M. Coord. Chem. Rev. 2002, 232, 95. https://doi.org/10.1016/S0010-8545(02)00086-3
  5. Hambley, T. W. Dalton Trans. 2007, 43, 4929. https://doi.org/10.1039/b706075k
  6. Ronconi, L.; Sadler, P. J. Coord. Chem. Rev. 2007, 251, 1633. https://doi.org/10.1016/j.ccr.2006.11.017
  7. Graf, N.; Lippard, S. J. Adv. Drug Deliv. Rev. 2012, 64, 993. https://doi.org/10.1016/j.addr.2012.01.007
  8. Ming, L. J. Med. Res. Rev. 2003, 23, 697. https://doi.org/10.1002/med.10052
  9. Al Qaraghuli, M. M.; Alzahrani, A. R.; Niwasabutra, K.; Obeid, M. A.; Ferro, V. A. Ann. Pharm. & Pharm. Sci. 2017, 2, 1. https://doi.org/10.24218/vjpps.2017.20
  10. David, B.; Wolfender, J. L.; Dias, D. A. Phytochem Rev. 2015, 14, 299. https://doi.org/10.1007/s11101-014-9367-z
  11. Turel, I. Coord. Chem. Rev. 2002, 232, 27. https://doi.org/10.1016/S0010-8545(02)00027-9
  12. Hassoon, A. A.; Harrison, R. G.; Nawar, N.; Smith, S. J.; Mostafa, M. M. J. Mol. Struct. 2020, 1203, 127240. https://doi.org/10.1016/j.molstruc.2019.127240
  13. Fleisher, M. B.; Waterman, K. C.; Turro, N. J.; Barton, J. K. Inorg. Chem. 1986, 25, 3549. https://doi.org/10.1021/ic00240a001
  14. Long, E. C.; Barton, J. K. Acc. Chem. Res. 1990, 23, 271. https://doi.org/10.1021/ar00177a001
  15. Prabhakara, M. C.; Basavaraju, B.; Naik, H. S. Bioinorg Chem. Appl. 2007, 2007.
  16. Bryan Sears, R.; Joyce, L. E.; Turro, C. Photochem. Photobiol. 2010, 86, 1230. https://doi.org/10.1111/j.1751-1097.2010.00814.x
  17. Tamiru, G.; Abebe, A.; Abebe, M.; Liyew, M. Ethiop. J. Sci. & Technol. 2019, 12, 69. https://doi.org/10.4314/ejst.v12i1.4
  18. Abebe, A.; Bayeh, Y.; Belay, M.; Gebretsadik, T.; Thomas, M.; Linert, W. Future J. Pharm. Sci. 2020, 6, 1. https://doi.org/10.1186/s43094-019-0015-8
  19. Soliman, S. M.; Al-Rasheed, H. H.; Albert, J. H.; El-Faham, A. Molecules 2020, 25, 5750. https://doi.org/10.3390/molecules25235750
  20. Reed, J. E.; White, A. J.; Neidle, S.; Vilar, R. Dalton Trans. 2009, 14, 2558. https://doi.org/10.1039/b820086f
  21. Melnic, E.; Coropceanu, E. B.; Kulikova, O. V.; Siminel, A. V.; Anderson, D.; Rivera-Jacquez, H. J.; Masunov, A. E.; Fonari, M. S.; Kravtsov, V. C. J. Phys. Chem. C. 2014, 118, 30087. https://doi.org/10.1021/jp5085845
  22. Abebe, A.; Atlabachew, M.; Liyew, M.; Ferede, E. Cogent Chem. 2018, 4, 1476077. https://doi.org/10.1080/23312009.2018.1476077
  23. Shapiro, R. In Progress in Nucleic Acid Research and Molecular Biology; 1968; Academic Press: Vol. 8, pp 73-112.
  24. Abebe, A.; Hailemariam, T. Bioinorg. Chem. Appl. 2016, 3607924.
  25. Wenger, O. S. Chem. Eur. J. 2019, 25, 6043. https://doi.org/10.1002/chem.201806148
  26. Ali, I.; Wani, W. A.; Saleem, K. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2013, 43, 1162. https://doi.org/10.1080/15533174.2012.756898
  27. Mikulski, C. M.; Mattucci, L.; Smith, Y.; Tran, T. B.; Karayannis, N. M. Inorg. Chim. Acta 1983, 80, 127. https://doi.org/10.1016/S0020-1693(00)91273-8
  28. Mastropietro, T. F.; Armentano, D.; Grisolia, E.; Zanchini, C.; Lloret, F.; Julve, M.; De Munno, G. Dalton Trans. 2008, 4, 514. https://doi.org/10.1039/B713960H
  29. Sheina, G. G.; Stepanian, S. G.; Radchenko, E. D.; Blagoi, Y. P. J. Mol. Struct. 1987, 158, 275. https://doi.org/10.1016/0022-2860(87)80024-8
  30. Mathlouthi, M.; Seuvre, A. M.; Koenig, J. L. Carbohydr. Res. 1986, 146, 15. https://doi.org/10.1016/0008-6215(86)85020-0
  31. Chandra, A. K.; Nguyen, M. T.; Uchimaru, T.; Zeegers-Huyskens, T. J. Phys. Chem. A 1999, 103, 8853. https://doi.org/10.1021/jp990647+
  32. Lever, A. P. Inorganic Electronic Spectroscopy 2nd ed., Elsevier: Amsterdam, 1984.
  33. Lobanov, S. S.; Hsu, H.; Lin, J. F.; Yoshino, T.; Goncharov, A. F. J. Geophys. Res., Solid Earth 2017, 122, 3565. https://doi.org/10.1002/2017JB014134
  34. Nicolescu, T. O. Mass Spectrometry 2017, 24.
  35. Looi, D. W.; Eyler, J. R.; Brajter-Toth, A. Electrochim. Acta 2011, 56, 2633. https://doi.org/10.1016/j.electacta.2010.12.009
  36. Cheng, P.; Li, Y.; Li, S.; Zhang, M.; Zhou, Z. Phys. Chem. Chem. Phys. 2010, 12, 4667. https://doi.org/10.1039/b919513k
  37. Banerjee, S.; Mazumdar, S. Int. J. Anal. Chem. 2012, 2012.
  38. Zhang, Q. L.; Liu, J. G.; Chao, H.; Xue, G. Q.; Ji, L. N. J. Inorg. Biochem. 2001, 83, 49. https://doi.org/10.1016/S0162-0134(00)00132-X
  39. de Castro, M. L.; Valcarcel, M.; Albahadily, F. N.; Mottola, H. A. J. Electroanal. Chem. 1987, 219, 139. https://doi.org/10.1016/0022-0728(87)85036-2
  40. Anjaneyulu, Y.; Rao, R. P. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 257. https://doi.org/10.1080/00945718608057530
  41. Tweedy, B. G. Phytopathology 1964, 55, 910.
  42. Warra, A. A. J. Chem. Pharm. Res. 2011, 3, 951.
  43. Mohamad, A. D. M.; Abualreish, M. J. A.; Abu-Dief, A. M. J. Mol. Liq. 2019, 290, 111162. https://doi.org/10.1016/j.molliq.2019.111162
  44. Moon, M. S. Asian Spine J. 2019, 13, 343. https://doi.org/10.31616/asj.2017.0239
  45. Mahmud, T.; Rehman, R.; Gulzar, A.; Khalid, A.; Anwar, J.; Shafique, U.; Salman, M. Arab. J. Chem. 2010, 3, 219. https://doi.org/10.1016/j.arabjc.2010.06.003
  46. Lawal, A.; Shodeinde, A. S.; Amolegbe, S. A.; Elaigwu, S. E.; Yunus-Issa, M. T. J. Appl. Sci. Environ. Manage. 2017, 21, 568.
  47. World Health Organization. WHO Model Prescribing Information: Drugs Used in Skin Diseases; World Health Organization; Geneva, 1997; 1-126.