Effects of Selective Exposure to YouTube Political Videos on Attitude Polarization: Verifying Mediating Effects of Political Identification

유튜브 정치동영상의 선택적 노출과 정치적 태도극화: 정치성향별 내집단 의식의 매개효과 검증

  • Ham, Minjeong ;
  • Lee, Sang Woo
  • 함민정 (연세대학교 정보대학원) ;
  • 이상우 (연세대학교 정보대학원)
  • Received : 2021.01.08
  • Accepted : 2021.03.07


YouTube has rapidly grown as a news media outlet. As political content without fact-checking is actively provided and YouTube algorithms are used for content recommendations, users are selectively exposed to certain political ideologies, which could escalate conflicts among political groups. In particular, the stronger the identification of in-group, the greater the antipathy toward outgroup, and the more exposed the content to the parties that support or oppose it, the stronger the identification or the antipathy can be. This study investigated the relationship between selective exposure and political attitude polarization in the context of political video on YouTube. Based on social identity theory, this study also found that political identification mediates the relationship between selective exposure and political attitude polarization.

2019 디지털뉴스 리포트에 따르면, 한국은 다른 국가들에 비해 유튜브를 통한 뉴스 이용 비중이 상대적으로 높은 편이다. 유튜브를 통한 정치뉴스 이용이 증가하게 되면, 사람들은 유튜브가 추천한 특정 정치이념에 선택적으로 노출되고 확증 편향된 사고방식을 갖게 되어 정치 집단 갈등의 골이 깊어질 수 있다. 사회적 정체성 이론(Social Identity Theory)에 따르면, 특정 정치 집단에 대한 내집단 의식이 강해질수록 외집단에 대한 반감이 더 커지거나 내집단에 대한 애착이 커지면서 정치적 집단 간 갈등이 극화될 수 있다. 이 연구는 일상적으로 소비되고 있는 유튜브 정치 동영상의 선택적 노출과 태도극화 현상을 진단하였고, 사회적 정체성 이론을 근거로 정치적 내집단 의식이 선택적 노출과 태도극화 간 관계를 매개한다는 사실을 밝혔다. 이 연구의 결과는 정치성향에 따라 정치적 내집단 의식의 매개효과가 상이하게 나타날 수 있음을 의미한다.


  1. V. Gueorguieva, "Voters, MySpace, and YouTube," Social Science Computer Review, Vol.26, No.3, pp.288-300, 2008.
  3. Reuters Institute, Reuters Institute Digital News Report, 2019.
  4. R. K. Garrett, S. D. Gvirsman, B. K. Johnson, Y. Tsfati, R. Neo, and A. Dal, "Implications of Pro- and Counterattitudinal Information Exposure for Affective Polarization," Human Communication Research, Vol.40, No.3, pp.309-332, 2014.
  5. 이정훈, "비판적 뉴스 이용 전략에 영향 미치는 요인에 대한 탐색적 연구: 뉴스 피로감, 정치적 세련도, 뉴스에 대한 지식 체계, 뉴스관의 주효과와 상호작용 효과를 중심으로," 한국콘텐츠학회논문지, 제19권, 제11호, pp.578-592, 2019.
  6. 김대근, 임석순, 유 진, 가짜뉴스 등 허위사실 유포로 인한 사이버상 유권자의사 왜곡 방지에 관한 연구, 중앙선거관리위원회, 2017.
  7. S. L. Gaertner, J. F. Dovidio, J. A. Nier, B. S. Banker, C. M. Ward, M. Houlette, and S. Loux, The common ingroup identity model for reducing intergroup bias: Progress and challenges. In D. Capozza & R. Brown (Eds), Social identity processes: Trends in theory and research, Sage Pub, 2000.
  8. W. A. Galston, If political fragmentation is the problem, is the Internet the solution? In: Anderson DM, Cornfield M and Arterton FC (eds) The Civic Web: Online Politics and Values, Rowman & Littlefield Pub, 2002.
  9. J. Lee and Y. Choi, "Effects of network heterogeneity on social media on opinion polarization among South Koreans: Focusing on fear and political orientation," International Communication Gazette, Vol.82, No.2, pp.119-139, 2019.
  10. V. Bakir and A. McStay, "Fake News and The Economy of Emotions," Digital Journalism, Vol.6, No.2, pp.154-175, 2017.
  11. S. Iyengar, and J. McGrady, Media and politics: A citizen's guide, W.W. Norton Pub, 2007.
  12. C. R. Sunstein, 2.0, Princeton University Press Pub, 2007.
  13. N. J. Stroud, "Polarization and Partisan Selective Exposure," Journal of Communication, Vol.60, No.3, pp.556-576, 2010.
  14. 노정규, 민영, "정치 정보에 대한 선택적 노출이 태도 극화에 미치는 효과-비정치적 온라인 커뮤니티 이용자들을 대상으로," 한국언론학보, 제56권, 제2호.
  16. J. M. Sumiala and M. Tikka, "Broadcast Yourself-Global News! A Netnography of the "Flotilla" News on YouTube," Communication, Culture & Critique, Vol.6, No.2, pp.318-335, 2013.
  17. M. Djerf-Pierre, Lindgren, and M. A. Budinski, "The Role of Journalism on YouTube: Audience Engagement with Superbug Reporting," Media and Communication, Vol.7, No.1, pp.235-247, 2019.
  18. J. Cho, S. Ahmed, M. Hilbert, B. Liu, and J. Luu, "Do Search Algorithms Endanger Democracy? An Experimental Investigation of Algorithm Effects on Political Polarization," Journal of Broadcasting & Electronic Media, Vol.64, No.2, pp.150-172, 2020.
  19. F. J. Zuiderveen Borgesius, D. Trilling, J. Moller, B. Bodo, C. H. de Vreese, and N. Helberger, "Should we worry about filter bubbles," Internet Policy Review, Vol.5, No.1, 2016.
  20. I. B. Dylko, "How Technology Encourages Political Selective Exposure," Communication Theory, Vol.26, No.4, pp.389-409, 2015.
  21. E. Pariser, The Filter Bubble: What the Internet is Hiding from You, Penguin Press Pub, 2011.
  22. S. Iyengar and K. S. Hahn, "Red media, blue media: Evidence of ideological selectivity in media use," Journal of Communication, Vol.59, No.1, pp.19-39, 2009.
  23. L. Guo, J. A. Rohde, and H. D. Wu, "Who is responsible for Twitter's echo chamber problem? Evidence from 2016 U.S. election networks," Information, Communication & Society, Vol.23, No.2, pp.234-251, 2018.
  24. M. Haim, A. Graefe, and H.B. Brosius, "Burst of the Filter Bubble?," Digital Journalism, Vol.6, No.3, pp.330-343, 2017.
  25. B. T. Bowyer, J. E. Kahne, and E. Middaugh, "Youth comprehension of political messages in YouTube videos," New Media & Society, Vol.19, No.4, pp.522-541, 2015.
  26. T. L. Towner and D. A. Dulio, "An Experiment of campaign effects during the YouTube Election," New media & Society, Vol.13, No.4, pp.626-644, 2011.
  27. S. Greene, "Understanding Party Identification: A Social Identity Approach," Political Psychology, Vol.20, No.2, pp.393-403, 1999.
  28. E. A. West and S. Iyengar, Partisanship as a Social Identity: Implications for Polarization, Political Behavior, 2020.
  29. H. Tajfel and J. C. Turner, The social identity theory of intergroup behavior, In S. Worchel & W. G. Austin (Eds.), Psychology of intergroup relations, Nelson-Hall Pub, 1986.
  30. S. Iyengar and S. J. Westwood, "Fear and Loathing across Party Lines: New Evidence on Group Polarization," American Journal of Political Science, Vol.59, No.3, pp.690-707, 2014.
  31. S. W. Webster and A. I. Abramowitz, "The Ideological Foundations of Affective Polarization in the U.S. Electorate," American Politics Research, Vol.45, No.4, pp.621-647, 2017.
  32. S. Iyengar, Y. Lelkes, M. Levendusky, N. Malhotra, and S. J. Westwood, "The Origins and Consequences of Affective Polarization in the United States," Annual Review of Political Science, Vol.22, No.1, pp.129-146, 2019.
  33. M. Wojcieszak, "Deliberation and Attitude Polarization," Journal of Communication, Vol.61, No.4, pp.596-617, 2011.
  34. D. Gefen, E. Rigdon, and D. Straub, "An Update and Extension to SEM Guidelines for Administrative and Social Science Research," MIS Quarterly, Vol.35, No.2, pp.3-14, 2011.
  35. D. Gefen, D. Straub, and M.C. Boudreau, "Stru ctural Equation Modeling and Regression: Guideli nes for Research Practice," Communications of th e Association for Information Systems, Vol.4, No. 7, pp.1-79, 2000.
  36. C. Fornell and D. F. Larcker, "Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics, Journal of Marketing Research," Vol.18, No.3, p.382, 1981.
  37. J. Graham, J. Haidt, and B. A. Nosek, "Liberals and Conservatives Rely on Different Sets of Moral Foundations," Journal of Personality and Social Psychology, Vol.96, No.5, pp.1029-1046, 2009.
  38. E. Simas, S. Clifford, and J. H. Kirkland, "How Empathic concern fuels political polarization," American Political Science Review, Vol.114, No.1, pp.258-269, 2020.
  39. 백강희, "포털 사이트 뉴스 이용행태, 포털 사이트 뉴스 신뢰도, 언론사 뉴스 신뢰도 간 관계에 대한 연구," 한국콘텐츠학회논문지, 제19권, 제10호, pp.306-314, 2019.