Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2020R1I1A3066250).
References
- R. Aboulaich, D. Meskine, and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), no. 4, 874-882. https://doi.org/10.1016/j.camwa.2008.01.017
- S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: existence and blow-up, Differ. Equ. Appl. 3 (2011), no. 4, 503-525. https://doi.org/10.7153/dea-03-32
- S. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math. 234 (2010), no. 9, 2633-2645. https://doi.org/10.1016/j.cam.2010.01.026
- S. Antontsev and S. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Studies in Differential Equations, 4, Atlantis Press, Paris, 2015. https://doi.org/10.2991/978-94-6239-112-3
- J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 473-486. https://doi.org/10.1093/qmath/28.4.473
- M. M. Cavalcanti, V. N. Domingos Cavalcanti, and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations 203 (2004), no. 1, 119-158. https://doi.org/10.1016/j.jde.2004.04.011
- L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
- D. E. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293. https://doi.org/10.4064/sm-143-3-267-293
- D. E. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent. II, Math. Nachr. 246/247 (2002), 53-67. https://doi.org/10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
- J. A. Esquivel-Avila, The dynamics of a nonlinear wave equation, J. Math. Anal. Appl. 279 (2003), no. 1, 135-150. https://doi.org/10.1016/S0022-247X(02)00701-1
- X. Fan and D. Zhao, On the spaces Lp(x) (Ω) and Wm,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617
- F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 2, 185-207. https://doi.org/10.1016/j.anihpc.2005.02.007
- V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994), no. 2, 295-308. https://doi.org/10.1006/jdeq.1994.1051
- T. G. Ha, Blow-up for semilinear wave equation with boundary damping and source terms, J. Math. Anal. Appl. 390 (2012), no. 1, 328-334. https://doi.org/10.1016/j.jmaa.2012.01.037
- R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal. 27 (1996), no. 10, 1165-1175. https://doi.org/10.1016/0362-546X(95)00119-G
- O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618. https://doi.org/10.21136/CMJ.1991.102493
- H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = -Au + F(u), Trans. Amer. Math. Soc. 192 (1974), 1-21. https://doi.org/10.2307/1996814
- S. Lian, W. Gao, C. Cao, and H. Yuan, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, J. Math. Anal. Appl. 342 (2008), no. 1, 27-38. https://doi.org/10.1016/j.jmaa.2007.11.046
- J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Second ed. Dunod, Paris, 2002.
- S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr. 231 (2001), 105-111. https://doi.org/10.1002/1522-2616(200111)231:1<105::aid-mana105>3.0.co;2-i
- S. A. Messaoudi, Global nonexistence in a nonlinearly damped wave equation, Appl. Anal. 80 (2001), no. 3-4, 269-277. https://doi.org/10.1080/00036810108840993
- S. A. Messaoudi, On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities, Math. Meth. Appl. Sci. 43 (2020), 5114-5126. https://doi.org/10.1002/mma.6254
- S. A. Messaoudi and A. A. Talahmeh, Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities, Math. Methods Appl. Sci. 40 (2017), no. 18, 6976-6986. https://doi.org/10.1002/mma.4505
- S. A. Messaoudi and A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 96 (2017), no. 9, 1509-1515. https://doi.org/10.1080/00036811.2016.1276170
- S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, Nonlinear damped wave equation: existence and blow-up, Comput. Math. Appl. 74 (2017), no. 12, 3024-3041. https://doi.org/10.1016/j.camwa.2017.07.048
- L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273-303. https://doi.org/10.1007/BF02761595
- D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30 (1968), 148-172. https://doi.org/10.1007/BF00250942
- G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canadian J. Math. 32 (1980), no. 3, 631-643. https://doi.org/10.4153/CJM-1980-049-5