Acknowledgement
The authors express their sincere thanks to the referees and the Editor for providing the valuable suggestions in the improvement of the paper. First author acknowledges authority of Shinas College of Technology for their continuous support and encouragement to carry out this research work.
References
- K. Arslan, R. Ezentas, I. Mihai, and C. Murathan, Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math. Soc. 42 (2005), no. 5, 1101-1110. https://doi.org/10.4134/JKMS.2005.42.5.1101
- A. Basari and C. Murathan, On generalized φ-recurrent Kenmotsu manifolds, Fen Derg. 3 (2008), no. 1, 91-97.
- A. L. Besse, Einstein manifolds, reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. https://doi.org/10.2307/1970165
- J.-P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.
- C. Calin, Kenmotsu manifolds with η-parallel Ricci tensor, Bull. Soc. Math. Banja Luka 10 (2003), 10-15.
- P. Cernea and D. Guan, Killing fields generated by multiple solutions to the Fischer-Marsden equation, Internat. J. Math. 26 (2015), no. 4, 1540006, 18 pp. https://doi.org/10.1142/S0129167X15400066
- S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52-60.
- S. K. Chaubey and C. S. Prasad, On generalized φ-recurrent Kenmotsu manifolds, TWMS J. Appl. Eng. Math. 5 (2015), no. 1, 1-9.
- J. T. Cho, Contact 3-manifolds with the Reeb flow symmetry, Tohoku Math. J. (2) 66 (2014), no. 4, 491-500. https://doi.org/10.2748/tmj/1432229193
- J. T. Cho, Reeb flow symmetry on almost cosymplectic three-manifolds, Bull. Korean Math. Soc. 53 (2016), no. 4, 1249-1257. https://doi.org/10.4134/BKMS.b150656
- J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273. https://doi.org/10.1016/j.difgeo.2014.05.002
- J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. https://doi.org/10.1007/PL00005533
- U. C. De and K. Mandal, The Fischer-Marsden conjecture on almost Kenmotsu manifolds, Quaestiones Mathematicae (2018), 1-9. http://dx.doi.org/10.2989/16073606.2018.1533499
- U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35 (2004), no. 2, 159-165.
- A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. https://doi.org/10.1090/S0002-9904-1974-13457-9
- G. Ghosh and U. C. De, Kenmotsu manifolds with generalized Tanaka-Webster connection, Publ. Inst. Math. (Beograd) (N.S.) 102(116) (2017), 221-230. https://doi.org/10.2298/pim1716221g
- J.-B. Jun, U. C. De, and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42 (2005), no. 3, 435-445. https://doi.org/10.4134/JKMS.2005.42.3.435
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. https://doi.org/10.2969/jmsj/03440665
- J. Lafontaine, Sur la geometrie d'une generalisation de l'equation differentielle d'Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63-72.
- K. Matsumoto, I. Mihai, and M. H. Shahid, Certain submanifolds of a Kenmotsu manifold, in The Third Pacific Rim Geometry Conference (Seoul, 1996), 183-193, Monogr. Geom. Topology, 25, Int. Press, Cambridge, MA, 1998.
- A. Mustafa, A. De, and S. Uddin, Characterization of warped product submanifolds in Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), no. 1, 86-97.
- M. F. Naghi, I. Mihai, S. Uddin, and F. R. Al-Solamy, Warped product skew CR-submanifolds of Kenmotsu manifolds and their applications, Filomat 32 (2018), no. 10, 3505-3528. https://doi.org/10.2298/fil1810505n
- C. Ozgur, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 8 (2006), 204-209.
- D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar. 76 (2018), no. 2, 207-216. https://doi.org/10.1007/s10998-017-0220-1
- G. Pitis, A remark on Kenmotsu manifolds, Bul. Univ. Bra,sov Ser. C 30 (1988), 31-32.
- D. G. Prakasha, P. Veeresha, and Venkatesha, The Fischer-Marsden conjecture on non-Kenmotsu (κ, µ) 0-almost Kenmotsu manifolds, J. Geom. 110 (2019), no. 1, Art. 1, 9 pp. https://doi.org/10.1007/s00022-018-0457-8
- S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tohoku Math. J. (2) 12 (1960), 459-476. https://doi.org/10.2748/tmj/1178244407
- S. Sular and C. Ozgur, On some submanifolds of Kenmotsu manifolds, Chaos Solitons Fractals 42 (2009), no. 4, 1990-1995. https://doi.org/10.1016/j.chaos.2009.03.185
- S. Sular, C. Ozgur, and C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacet. J. Math. Stat. 39 (2010), no. 4, 535-543.
- T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91-113. https://doi.org/10.2748/tmj/1178240699
- Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 3, 345-355. http://projecteuclid.org/euclid.bbms/1473186509 https://doi.org/10.36045/bbms/1473186509
- Y. Wang, Three-dimensional almost Kenmotsu manifolds with η-parallel Ricci tensor, J. Korean Math. Soc. 54 (2017), no. 3, 793-805. https://doi.org/10.4134/JKMS.j160252
- Y. Wang, Cotton tensors on almost coKahler 3-manifolds, Ann. Polon. Math. 120 (2017), no. 2, 135-148. https://doi.org/10.4064/ap170410-3-10
- Y. Zhao, W. Wang, and X. Liu, Trans-Sasakian 3-manifolds with Reeb flow invariant Ricci operator, Mathematics 6 (2018), 246-252. https://doi:10.3390/math6110246