DOI QR코드

DOI QR Code

Vulcanizate Structures of NR Compounds with Silica and Carbon Black Binary Filler Systems at Different Curing Temperatures

  • Kim, Il Jin (Global Quality Management Team, Hankooktire & Technology Co., Ltd HQ) ;
  • Kim, Donghyuk (Department of Chemical Engineering, Pusan National University) ;
  • Ahn, Byungkyu (Wet Braking Innovation TFT, Hankooktire & Technology Co., Ltd R&D Center) ;
  • Lee, Hyung Jae (Global Quality Management Team, Hankooktire & Technology Co., Ltd HQ) ;
  • Kim, Hak Joo (Global Quality Management Team, Hankooktire & Technology Co., Ltd HQ) ;
  • Kim, Wonho (Department of Chemical Engineering, Pusan National University)
  • Received : 2021.02.03
  • Accepted : 2021.03.03
  • Published : 2021.03.31

Abstract

There is an increasing demand for the rolling resistance reduction in truck bus radial (TBR) tires in the tire industry. In TBR tires, natural rubber is used as a base polymer to prevent wear and satisfy required physical properties (cut and chip). A binary filler system (silica and carbon black) is used to balance the durability of the tire and rolling resistance performance. In this study, natural rubber (NR) compounds applied with a binary filler system were manufactured at different cure temperatures for vulcanizate structure analysis. The vulcanizate structures were categorized into carbon black bound rubber, silica silane rubber network, and chemical crosslink density by sulfur. Regardless of the cure temperature, the cross-link density per unit content of carbon black had a greater effect on the properties than silica due to affinity with NR. The relationship analysis between the mechanical, viscoelastic properties with vulcanizate structure could be a guideline for manufacturing practical TBR compounds.

Keywords

References

  1. A. N. Gent, J. E. Mark, and F. R. Eirich, "Science and technology of rubber", ed. Eirich FR, Academic Press, New York, 1978.
  2. L. A. Walker and W. F. Helt III, "High-temperature curing of radial passenger tires", Rubber Chem. Technol., 59, 285 (1986). https://doi.org/10.5254/1.3538201
  3. W. Hofmann, "Vulcanization and Vulcanizing Agent", London: Maclaren, 371 (1967).
  4. R. L. Fan, Y. Zhang, F. Li, and Y. X. Zhang, "Effect of high-temperature curing on the crosslink structures and dynamic mechanical properties of gum and N330-filled natural rubber vulcanizates", Polym. Test., 20, 925 (2001). https://doi.org/10.1016/S0142-9418(01)00035-6
  5. S. S. Sarkawi, K. D. Wilma, and J. W. Noordermeer, "Morphology of silica-reinforced natural rubber: the effect of silane coupling agent", Rubber Chem. Technol., 88, 359 (2015). https://doi.org/10.5254/rct.15.86936
  6. B. Rodgers, "Tire Engineering: An Introduction", CRC Press, 2020.
  7. S. Han, W. S. Kim, D. Y. Mun, B. Ahn, and W. Kim, "Effect of coupling agents on the vulcanizate structure of carbon black filled natural rubber", Compos. Interfaces, 27, 355 (2020). https://doi.org/10.1080/09276440.2019.1637197
  8. E. M. Cichomski, "Silica-silane reinforced passenger car tire treads: effect of silica morphology, silica-polymer interface structure and rubber matrix network on tire-performance indicators", Ph. D. Thesis, University of Twente, (2015).
  9. Y. C. Jung, "Mixed use of carbon black and silica", Elast. Compo., 20, 229 (1985).
  10. S. Wolff, "Chemical aspects of rubber reinforcement by fillers", Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  11. N. Rattanasom, T. A. Saowapark, and C. Deeprasertkul, "Reinforcement of natural rubber with silica/carbon black hybrid filler", Polym. Test., 26, 369 (2007). https://doi.org/10.1016/j.polymertesting.2006.12.003
  12. M. J. Wang, Y. Kutsovsky, P. Zhang, L. J. Murphy, S. Laube, and K. Mahmud, "New generation carbon-silica dual phase filler part I. Characterization and application to passenger tire", Rubber. Chem. Technol., 75, 247 (2002). https://doi.org/10.5254/1.3544975
  13. B. Ahn, J. Y. Lee, D. Kim, I. J. Kim, S. Han, and W. Kim, "Effects of silane agents and curing temperatures on vulcanizate structures", Rubber Chem. Technol., 93, 414 (2020). https://doi.org/10.5254/rct.19.80445
  14. N. J. Morrison and M. Porter, "Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization", Rubber Chem. Technol., 57, 63 (1984). https://doi.org/10.5254/1.3536002
  15. S. S. Choi, "Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging", J. Appl. Polym. Sci., 75, 1378 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1378::AID-APP9>3.0.CO;2-I
  16. P. K. Pal, A. K. Bhowmick, and S. K. De, "The effects of carbon black-vulcanization system interactions on natural rubber network structures and properties", Rubber Chem. Technol., 55, 23 (1982). https://doi.org/10.5254/1.3535871
  17. E. Cichomski, W. K. Dierkes, J. W. Noordermeer, S. M. Schultz, T. V. Tolpekina, L. A. E. M. Reuvekamp, and A. Blume, "Effect of the crosslink density and sulfur-length on wet-traction and rolling resistance performance indicators for passenger car tire tread materials", In 188th Technical Meeting of Rubber Division, ACS, pp. 13-15, 2015.
  18. R. Mukhopadhyay, S. K. De, and S. N. Chakraborty, "Effect of vulcanization temperature and vulcanization systems on the structure and properties of natural rubber vulcanizates", Polymer, 18, 1243 (1977). https://doi.org/10.1016/0032-3861(77)90287-7
  19. C. T. Loo, "High temperature vulcanization of elastomers: 2. Network structures in conventional sulphenamide-sulphur natural rubber vulcanizates", Polymer, 15, 357 (1974). https://doi.org/10.1016/0032-3861(74)90177-3
  20. P. J. Flory and J. Rehner Jr, "Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity", J. Chem. Phys., 11, 512 (1943). https://doi.org/10.1063/1.1723791
  21. P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950). https://doi.org/10.1063/1.1747424
  22. G. Kraus, "Swelling of filler‐reinforced vulcanizates", J. Appl. Polym., 7, 861 (1963). https://doi.org/10.1002/app.1963.070070306
  23. B. B. Boonstra and G. L. Taylor, "Swelling of filled rubber vulcanizates", Rubber Chem. Technol., 38, 943 (1965). https://doi.org/10.5254/1.3535712
  24. J. Y. Lee, B. Ahn, W. Kim, H. Moon, H. J. Paik, and W. Kim, "The effect of accelerator contents on the vulcanizate structures of SSBR/silica vulcanizates", Compos. Interfaces, 24, 563 (2017). https://doi.org/10.1080/09276440.2017.1241559
  25. J. Y. Lee, N. Park, S. Lim, B. Ahn, W. Kim, H. Moon, and W. Kim, "Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds", Compos. Interfaces, 24, 711 (2017). https://doi.org/10.1080/09276440.2017.1267524
  26. N. Park, B. Ahn, J. Y. Lee, W. Kim, H. Moon, and W. Kim "Effect of organosilane agents on the vulcanizate structure and physical properties of silica-filled solution styrene butadiene rubber compounds", Compos. Interfaces, 25, 259 (2018). https://doi.org/10.1080/09276440.2018.1387422
  27. B. Ahn, D. Kim, K. Kim, I. J. Kim, H. J. Kim, C. H. Kang, and W. Kim, "Effect of the functional group of silanes on the modification of silica surface and the physical properties of solution styrene-butadiene rubber/silica composites", Compos. Interfaces, 26, 585 (2019). https://doi.org/10.1080/09276440.2018.1514145
  28. B. Ahn, N. Park, D. Kim, and W. Kim, "Influence of end-functionalized solution styrene-butadiene rubber on silica-filled vulcanizates with various silica-silane systems", Rubber Chem. Technol., 92, 364 (2019). https://doi.org/10.5254/rct.19.81522
  29. I. J. Kim, B. Ahn, D. Kim, H. J. Lee, H. J. Kim, and W. Kim, "Vulcanizate structures and mechanical properties of rubber compounds with silica and carbon black binary filler systems", Rubber Chem. Technol., 93, https://doi.org/10.5254/rct.20.80368 (2020).
  30. I. J. Kim, B. Ahn, D. Kim, H. J. Lee, H. J. Kim, and W. Kim, "Vulcanizate structures of SBR compounds with silica and carbon black binary filler systems at different curing temperatures", Polymers, 12, 2343 (2020). https://doi.org/10.3390/polym12102343
  31. S. Wolff, M. J. Wang, and E. H. Tan, "Filler-elastomer interactions. X: The effect of filler-elastomer and filler-filler interaction on rubber reinforcement", Kautschuk und Gummi, Kunststoffe, 47, 102 (1994).
  32. Y. Fukahori, "Generalized concept of the reinforcement of elastomers. Part 1: Carbon black reinforcement of rubbers", Rubber Chem. Technol., 80, 701 (2007). https://doi.org/10.5254/1.3548189
  33. H. Dorrie, C. Schroder, and B. Wies, "Winter tires: operating conditions, tire characteristics and vehicle driving behavior", Tire Science and Technology, 38, 119 (2010). https://doi.org/10.2346/1.3428961
  34. G. Della Vecchia, "Performance resins in tread formulations-optimizing wet, winter, wear", Tire Technology EXPO 2019, Hannover, Germany, 5-7 March 2019.
  35. A. G. Veith, "Rubber vs. countersurface frictional behaviour: How this influences the traction of pneumatic tyres", Progress in Rubber and Plastics Technology, 14, 1 (1998).
  36. C. F. Derham, R. Newell, and P. M. Swift, "The use of silica for improving tread grip in winter tyres", NR Technology, 19, HS-040 650 (1988).
  37. X. Liu, S. Zhao, X. Zhang, X. Li, and Y. Bai, "Preparation, structure, and properties of solution-polymerized styrenebutadiene rubber with functionalized end-groups and its silica-filled composites", Polymer, 55, 1964 (2014). https://doi.org/10.1016/j.polymer.2014.02.067
  38. J. Han, X. Zhang, and W. Guo, "Effect of modified carbon black on the filler-elastomer interaction and dynamic mechanical properties of SBR vulcanizates", J. Appl. Polym. Sci., 100, 3707 (2006). https://doi.org/10.1002/app.23233