DOI QR코드

DOI QR Code

Effect of Silane and Sulfur Variation on the Vulcanizate Structure of Silica-Filled Styrene-Butadiene Rubber Compounds

  • Han, Sangwook (Precedent Research Business Sector, Future Technology Research Institute) ;
  • Kim, Donghyuk (School of Chemical Engineering, Pusan National University) ;
  • Kim, Seongrae (Precedent Research Business Sector, Future Technology Research Institute) ;
  • Kim, Jongmyoung (Precedent Research Business Sector, Future Technology Research Institute) ;
  • Mun, Dalyong (Precedent Research Business Sector, Future Technology Research Institute) ;
  • Morita, Koichi (Precedent Research Business Sector, Future Technology Research Institute) ;
  • Kim, Wonho (Precedent Research Business Sector, Future Technology Research Institute)
  • Received : 2021.02.17
  • Accepted : 2021.03.08
  • Published : 2021.03.31

Abstract

The vulcanizate structure of silica-filled compounds is affected by the filler-rubber interaction (FRI) due to the silica-rubber coupling reaction and the chemical crosslink density (CCD) of the matrix rubber. In this study, the vulcanizate structure changes of silica-filled compounds according to the silane and sulfur variation were quantitatively analyzed using the Flory-Rehner and Kraus equations. In efficiency vulcanization (EV) conditions with low sulfur content, FRI increased when the bis-[3-(triethoxysilyl)propyl]tetrasulfide (TESPT) content increased, and the CCD clearly decreased. By contrast, in semi-EV conditions with high sulfur content, as TESPT content increased, the FRI increased the same way EV conditions, but the CCD was unchanged. Based on these results, it was confirmed that FRI of the silica-filled compounds increased as TESPT content increased, but CCD decreased or retained similar values according to the vulcanization system, indicating that the formation reaction of FRI was preferred over CCD.

Keywords

References

  1. S. Maghami, "Silica-filled tire tread compounds: an investigation into the viscoelastic properties of the rubber compounds and their relation to tire performance", PhD Thesis, University of Twente, the Netherlands, (2016).
  2. E. P. Rauline, "Rubber compound and tires based on such a compound", Patent 0501227A1 (1992).
  3. R. Rauline, "Copolymer rubber composition with silica filler, tires having a base of said composition and method of preparing same", U.S. Patent No. 5227425 (1993).
  4. A. Bertora, M. Castellano, E. Marsano, M. Alessi, L. Conzatti, P. Stagnaro, and A. Turturro, "A new modifier for silica in reinforcing SBR elastomers for the tyre industry", Macromol. Mater. Eng., 296, 455 (2011). https://doi.org/10.1002/mame.201000335
  5. S. Wolff, "Chemical aspects of rubber reinforcement by fillers", Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  6. A. S. Hashim, B. Azahari, Y. Ikeda, and S. Kohjiya, "The effect of bis (3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene-butadiene rubber", Rubber Chem. Technol., 71, 289 (1998). https://doi.org/10.5254/1.3538485
  7. S. Han, B. Gu, S. Kim, S. Kim, D. Mun, K. Morita, and W. Kim, "Effect of sulfur variation on the vulcanizate structure of silica-filled styrene-butadiene rubber compounds with a sulfide-silane coupling agent", Polymers, 12, 2815 (2020). https://doi.org/10.3390/polym12122815
  8. J. Y. Lee, B. Ahn, W. Kim, H. Moon, H. J. Paik, and W. Kim, "The effect of accelerator contents on the vulcanizate structures of SSBR/silica vulcanizates", Compos. Interfaces, 24, 563 (2017). https://doi.org/10.1080/09276440.2017.1241559
  9. B. Ahn, N. Park, D. Kim, and W. Kim, "Influence of end-functionalized solution styrene-butadiene rubber on silica-filled vulcanizates with various silica-silane systems", Rubber Chem. Technol., 92, 364 (2019). https://doi.org/10.5254/rct.19.81522
  10. B. Ahn, D. Kim, K. Kim, I. J. Kim, H. J. Kim, C. H. Kang, and W. Kim, "Effect of the functional group of silanes on the modification of silica surface and the physical properties of solution styrene-butadiene rubber/silica composites", Compos. Interfaces, 26, 585 (2019). https://doi.org/10.1080/09276440.2018.1514145
  11. H. Mun, K. Hwang, and W. Kim, "Synthesis of emulsion styrene butadiene rubber by reversible addition-fragmentation chain transfer polymerization and its properties", J. Appl. Polym. Sci., 136, 47069 (2019). https://doi.org/10.1002/app.47069
  12. N. Park, B. Ahn, J. Y. Lee, W. Kim, H. Moon, and W. Kim, "Effect of organosilane agents on the vulcanizate structure and physical properties of silica-filled solution styrene butadiene rubber compounds", Compos. Interfaces, 25, 259 (2018). https://doi.org/10.1080/09276440.2018.1387422
  13. S. Han, W. S. Kim, D. Y. Mun, B. Ahn, and W. Kim, "Effect of coupling agents on the vulcanizate structure of carbon black filled natural rubber", Composite Interfaces, 27, 355 (2020). https://doi.org/10.1080/09276440.2019.1637197
  14. I. J. Kim, B. Ahn, D. Kim, H. J. Lee, H. J. Kim, and W. Kim, "Vulcanizate structures and mechanical properties of rubber compounds with silica and carbon black binary filler systems", Rubber Chem. Technol., 93, https://doi.org/10.5254/rct.20.80368 (2020).
  15. I. J. Kim, B. Ahn, D. Kim, H. J. Lee, H. J. Kim, and W. Kim, "Vulcanizate structures of SBR compounds with silica and carbon black binary filler systems at different curing temperatures", Polymers, 12, 2343 (2020). https://doi.org/10.3390/polym12102343
  16. M. J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber Chem Technol., 71, 520 (1998). https://doi.org/10.5254/1.3538492
  17. L. Qu, G. Yu, X. Xie, L. Wang, J. Li, and Q. Zhao, "Effect of silane coupling agent on filler and rubber interaction of silica reinforced solution styrene butadiene rubber", Polym. Compos., 34, 1575 (2013). https://doi.org/10.1002/pc.22554
  18. A. Hasse, O. Klockmann, A. Wehmeier, and H. D. Luginsland, "Influence of the amount of di- and polysulfane silanes on the crosslinking density of silica-filled rubber compounds", Kautschuk und Gummi Kunststoffe., 55, 236 (2002).
  19. M. J. Wang, S. Wolff, and J. B. Donnet, "Filler-elastomer interactions. Part I: Silica surface energies and interactions with model compounds", Rubber Chem Technol., 64, 559 (1991). https://doi.org/10.5254/1.3538573
  20. O. Klockmann and A. Hasse, "A new rubber silane for future requirements: Lower rolling resistance; Lower VOCs", Kautschuk, Gummi, Kunststoffe, 60, 82 (2007).
  21. S. E. Meyer, W. Schwarze, F. Thurn, and R. Michel, "Sulfur containing organosilicon compounds", U.S. Patent 3842111 (1974).
  22. K. Kim, J. Y. Lee, B. J. Choi, B. Seo, G. H. Kwag, H. J. Paik, and W. Kim, "Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: dispersion of silica particles and dynamic mechanical properties", Composite Interfaces, 21, 685 (2014). https://doi.org/10.1080/15685543.2014.927720
  23. K.; Kim, B.; Seo, J. Y. Lee, B. J. Choi, G. H. Kwag, H. J. Paik, and W. Kim, "Reduced filler flocculation in the silica-filled styrene-butadiene-glycidyl methacrylate terpolymer", Composite Interfaces, 22, 137 (2015). https://doi.org/10.1080/15685543.2015.997115
  24. U. Gorl, J. Munzenberg, D. Luginsland, and A. Muller, "Investigations on the reaction silica/organosilane and organosilane/polymer-Part 4: Studies on the chemistry of the silane sulfur chain", Kautschuk und Gummi Kunststoffe, 52, 588 (1999).
  25. S. Mihara, R. N. Datta, and J. W. M. Noordermeer, "Flocculation in silica reinforced rubber compounds", Rubber Chem. Technol., 82, 524 (2009). https://doi.org/10.5254/1.3548262
  26. W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds", Rubber Chem. and Technol., 85, 277 (2012). https://doi.org/10.5254/rct.12.88935
  27. W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica", Rubber Chem. Technol., 87, 291 (2014). https://doi.org/10.5254/RCT.13.86990
  28. S. C. Debnath, R. N. Datta, and J. W. M. Noordermeer, "Understanding the chemistry of the rubber/silane reaction for silica reinforcement, using model olefins", Rubber Chem. Technol., 76, 1311 (2003). https://doi.org/10.5254/1.3547804
  29. H. D. Luginsland, "Reactivity of the sulfur chains of the tetrasulfane silane Si 69 and the disulfane silane TESPD", Kautschuk und Gummi Kunststoffe, 53, 10 (2000).
  30. H. E. Mayasari and A. Yuniari, "Effect of vulcanization system and carbon black on mechanical and swelling properties of EPDM blends", Majalah Kulit, Karet, dan Plastik, 32, 59 (2016). https://doi.org/10.20543/mkkp.v32i1.706
  31. P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950). https://doi.org/10.1063/1.1747424
  32. G. Kraus, "Degree of cure in filler-reinforced vulcanizates by the swelling method", Rubber Chem. Technol., 30, 928 (1957). https://doi.org/10.5254/1.3542738
  33. S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization", European Polymer Journal, 54, 118 (2014). https://doi.org/10.1016/j.eurpolymj.2014.02.015
  34. A. R. Payne and R. E. Whittaker, "Low strain dynamic properties of filled rubbers", Rubber Chem. Technol., 44, 440 (1971). https://doi.org/10.5254/1.3547375
  35. S. J. Blanksby and G. B. Ellison, "Bond dissociation energies of organic molecules", Accounts of Chemical Research, 36, 255 (2003). https://doi.org/10.1021/ar020230d
  36. S. S. Choi, "Bond dissociation of sulfur crosslinks in IR and BR vulcanizates using semi-empirical calculations", Korea Polymer Journal, 5, 39 (1997).
  37. M. T. Ramesan, "The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites", J. Polym. Research, 11, 333 (2005). https://doi.org/10.1007/s10965-005-6571-y
  38. W. H. Waddell and L. R. Evans, "Use of nonblack fillers in tire compounds", Rubber Chem. Technol., 69, 377 (1996). https://doi.org/10.5254/1.3538378
  39. K. Suchiva, C. Sirisinha, P. Sae-oui, and P. Thapthong, "Development of tyre tread compounds for good wet-grip: effects of rubber type", IOP Conference Series. Mater. Sci. Eng., 526 (2019).
  40. H. W. Kummer, "Unified theory of rubber and tire friction. Eng. Research Bulletin B-94", pp. 100-101, Pennsylvania State University, 1966.
  41. D. Woodward, P. Millar, C. Lantieri, C. Sangiorgi, and V. Vignali, "The wear of Stone Mastic Asphalt due to slow speed high stress simulated laboratory trafficking", Constr. Build. Mater., 110, 270 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.031
  42. A. Dunford, "Friction and the texture of aggregate particles used in the road surface course", PhD Thesis, University of Nottingham, United Kingdom (2013).
  43. D. N. Little and A. Bhasin, "Using Surface Energy Measurements to Select Materials for Asphalt Pavement", No. NCHRP Project 9-37, 2006.
  44. J. Berg, Interfaces and Colloids; World Scientific: Hackensack, NJ, USA, 2010; pp. 250-268.