DOI QR코드

DOI QR Code

페로브스카이트 반도체 물질에 원형 패턴을 형성하기 위한 상압플라즈마 식각 기술

Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials

  • 김무진 (강남대학교 IoT전자공학과)
  • Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
  • 투고 : 2021.01.11
  • 심사 : 2021.02.20
  • 발행 : 2021.02.28

초록

본 논문에서는 먼저 습식 코팅 방법으로 페로브스카이트 (CH3NH3PbI3) 박막을 글라스 상에 형성하고, 다양한 분석 기법을 이용하여 막의 두께, 표면거칠기, 결정성, 구성성분 및 가시광 영역에서의 이 물질의 반응에 대해 논한다. 완성된 반도체 물질은 막내부에 결함(defect)이 없고 균일하며, 표면거칠기는 매우 작으며, 가시광영역에서 높은 흡수율이 관찰되었다. 다음으로 이와 같이 형성된 유무기 층에 hole 형상을 구현하기 위하여, 구멍이 일정한 간격으로 있는 메탈마스크, 페로브스카이트 물질이 코팅되어 있는 유리, 자석 순서로 되어있는 구조의 샘플을 상압플라즈마 공법을 이용하여 시간에 따른 물질에 형성되는 hole 형태의 변화를 분석하였다. 시간이 길어짐에 따라 더 많이 식각되는 것을 알 수 있으며, 이 중에서 공정 시간을 가장 오래한 샘플에 대해서는 보다 자세하게 살펴보았고, 플라즈마의 위치에 따른 차이에 의해 7영역으로 분류할 수 있었다.

In this paper, we formed perovskite (CH3NH3PbI3) thin films on glass with wet coating methods, and used various analytical techniques to discuss film thickness, surface roughness, crystallinity, composition, and optical property. The coated semiconductor material has no defects and is uniform, the surface roughness value is very small, and a high absorption rate has been observed in the visible light area. Next, in order to implement the hole shape in the organic-inorganic layer, Samples in the order of a metal mask with holes at regular intervals, a glass coated with a perovskite material, and a magnet were etched with atmospheric pressure plasma equipment. The shape of the hole formed in the perovskite material was analyzed by changing the time. It can be seen that more etching is performed as the time increases. The sample with the longest processing time was examined in more detail, and it was classified into 7 regions by the difference according to the location of the plasma.

키워드

참고문헌

  1. D. Ban, H. Luo, H. C. Liu, Z. R. Wasilewski, A. J. SpringThorpe, R. Glew & M. Buchanan (2004). Optimized GaAs∕AlGaAs light-emitting diodes and high efficiency wafer-fused optical up-conversion devices. Journal of Applied Physics, 96(9), 5243. DOI : 10.1063/1.1785867
  2. L. Uhlig, M. Wachs, D. J. Kunzmann & U. T. Schwarz (2020). Spectral-temporal dynamics of (Al,In)GaN laser diodes. Optics Express, 28(2), 1771-1789. DOI : 10.1364/OE.382257
  3. K. B. Kim, M. J. Kim, J. H. Baek, Y. J. Park, J. R. Lee, J. S. Kim & C. W. Jeon (2014). Influence of Cr Thin Films on the Properties of Flexible CIGS Solar Cells on Steel Substrates. Electronic Materials Letters, 10(1), 247-251. DOI : 10.1007/s13391-013-3158-3
  4. X. Mathew, J. P. Enriquez, A. Romeo & A. N. Tiwari (2004). CdTe/CdS solar cells on flexible substrates. Solar Energy, 77(6), 831-838. DOI : 10.1016/j.solener.2004.06.020
  5. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh & J. W. Seo (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515. DOI : 10.1038/s41586-019-1036-3
  6. X. X. Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Zuttel, Y. Feng & M. K. Nazeeruddin (2020). Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells. ADVANCED MATERIALS, 32(9), 1905502. DOI : 10.1002/adma.201905502
  7. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays. Journal of Convergence for Information Technology, 9(5), 117-124. DOI : 10.22156/CS4SMB.2019.9.5.117
  8. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075
  9. M. S. Alias, Y. Yang, T. K. Ng, I. Dursun, D. Shi, M. I. Saidaminov, D. Priante, O. M. Bakr & B. S. Ooi (2016). Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. The Journal of Physical Chemistry Letters, 7(1), 137-142. DOI : 10.1021/acs.jpclett.5b02558
  10. Z. Li, J. Moon, A. Gharajeh, R. Haroldson, R. Hawkins, W. Hu, A. Zakhidov & Q. Gu (2018). Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 12(11), 10968-10976. DOI : 10.1021/acsnano.8b04854
  11. H. P. Kim, M. J. Kim, K. B. Kim, H. Khachatryan & J. Jang (2017). Properties of atmospheric hydrogen-plasma-treated CH3NH3PbI3 perovskite films. Surface & Coatings Technology, 330, 228-233. DOI : 10.1016/j.surfcoat.2017.09.002
  12. H. Khachatryan, H. P. Kim, S. N. Lee, H. K. Kim, M. J. Kim, K. B. Kim & J. Jang (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen -plasma. Materials Science in Semiconductor Processing, 75, 1-9. DOI : 10.1016/j.mssp.2017.11.019
  13. H. Khachatryan, Y. H. Kim, K. B. Kim, H. J. Yang & M. J. Kim (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022
  14. C. Tendero, C. Tixier, P. Tristant, J. Desmaison & P. Leprince (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30. DOI : 10.1016/j.sab.2005.10.003
  15. U. Kogelschatz (2004). Atmospheric-pressure plasma technology. PLASMA PHYSICS AND CONTROLLED FUSION, 46, B63-B75. DOI : 10.1088/0741-3335/46/12B/006
  16. K. B. Kim, J. P. Lee, & M. J. Kim (2019). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028