DOI QR코드

DOI QR Code

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode

  • Al-Saady, Fouad A.A. (Faculty of pharmacy, Al-Mustansriyah University) ;
  • Abbar, Ali H. (Chemical Engineering Department, University of Al-Qadisiyah)
  • Received : 2019.11.18
  • Accepted : 2020.08.20
  • Published : 2021.02.28

Abstract

Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.

Keywords

References

  1. M. A. Salam, G. Al-Zhrani, S. A. Kosa, C. R. Chimie, 2012, 15(5) ,398- 408. https://doi.org/10.1016/j.crci.2012.01.013
  2. P. X. Sheng, Y. P. Ting, J. P. Chen , L. Hong, J. Colloid Interface Science, 2004, 275(1), 131-141. https://doi.org/10.1016/j.jcis.2004.01.036
  3. B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, K. L. Dorris, J. Hazard. Mater, 2000, 80(1-3), 33-42. https://doi.org/10.1016/S0304-3894(00)00278-8
  4. M. Madhava Rao, A. Ramesh, , G. Purna Chandra Rao, K. Seshaiah, Journal of Hazardous Materials, 2006, 129(1-3),123-129. https://doi.org/10.1016/j.jhazmat.2005.08.018
  5. F. Patrice Fato, D-W. Li, L.-J. Zhao, K. Qiu, Y. Long, ACS Omega, 2019, 4(4), 7543-7549. https://doi.org/10.1021/acsomega.9b00731
  6. O. J. Esalah, M. E. Weber , J. H. Vera, The Can. J. Chem. Engg, 2000, 78(5), 948-954. https://doi.org/10.1002/cjce.5450780512
  7. V. Ravindran, M. R. Stevens, B. N. Badriyha , M. Pirbazari, Am. Inst. of Chem. Engg. J, 1999, 45(5), 1135-1146. https://doi.org/10.1002/aic.690450520
  8. C. A. Toles, W. E. Marshall, Sep. Sci. and Tech, 2002, 37(10), 2369-2383. https://doi.org/10.1081/SS-120003518
  9. A. I. Zouboulis, K. A. Matis, B. G. Lanara, C. Loos-Neskovic, Separation Science and Technology, 1997, 32(10), 1755-1767. https://doi.org/10.1080/01496399708000733
  10. L. Canet, M. Ilpide, P. Seta, Sep. Sci. and Tech, 2002, 37(8), 1851-1860. https://doi.org/10.1081/SS-120003047
  11. H. Eccles, Trends in Biotechnology, 1999, 17(12), 462-465. https://doi.org/10.1016/S0167-7799(99)01381-5
  12. F. Fu, Q. Wang, J. Environ. Manage, 2011, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
  13. K. Juttner, U. Galla, H. Schmieder, Electrochimica Acta, 2000, 45(15-16), 2575-2594. https://doi.org/10.1016/S0013-4686(00)00339-X
  14. D. Pletcher, F. C. Walsh, Industrial Electrochemistry, Chapman and Hall, New York, 1990.
  15. G. A. Tonini, F. R. Martins, P. F. De Almeida PradoMartins, L. A., Ruotolo , J. Chem. Technol. Biotechnol, 2013, 88(5), 800-807. https://doi.org/10.1002/jctb.3902
  16. A. Yaqub, H. Ajab, S. Khan, S. Khan, R. Farooq, Water Quality Research Journal, 2009, 44(2), 183-188. https://doi.org/10.2166/wqrj.2009.020
  17. S. H. Chang, K. S. Wang, P. I. Hu, I. C. Lui, Journal of hazardous materials, 2009, 163(2-3), 544-549. https://doi.org/10.1016/j.jhazmat.2008.06.123
  18. S. Chellammal, S. Raghu, P. Kalaiselvi, G. Subramanian, Journal of hazardous materials, 2010, 180(1-3), 91-97. https://doi.org/10.1016/j.jhazmat.2010.03.103
  19. C. A. Basha, R. Saravanathamizhan, V. Nandakumar, K. Chitra, C. W. Lee, Chemical Engineering Research and Design, 2013, 91(3), 552-559. https://doi.org/10.1016/j.cherd.2012.11.003
  20. I. A. Khattab, M. F. Shaffei, N. A. Shaaban, H. S. Hussein, S. S. Abd El-Rehim, Egyptian Journal of Petroleum , 2013, 22(1), 199-203. https://doi.org/10.1016/j.ejpe.2012.09.011
  21. I. A. Khattab, M. F. Shaffei, N. A. Shaaban, H. S. Hussein, S. S. Abd El-Rehim, Egyptian Journal of Petroleum, 2013, 22(1), 205-210. https://doi.org/10.1016/j.ejpe.2012.09.012
  22. Ma. L. Llovera-Hernandez, A. Alvarez Gallegos, J.A. Hernandez, S. Silva-Martinez, Desalination Water Treat, 2016, 57(48-49), 22809-22817. https://doi.org/10.1080/19443994.2015.1126411
  23. A. H. Sulaymon, S. A. M. Mohammed, A. H. Abbar, Desalination Water Treat, 2017, 74, 197-206. https://doi.org/10.5004/dwt.2017.20565
  24. F. C. Walsh, Electrochemistry for a cleaner environment, USA, 1992.
  25. D. R. Gabe, J. Appl. Electrochem, 1974, 4(2), 91-108. https://doi.org/10.1007/BF00609018
  26. A. H. Abbar, R. H. Salman, A. S. Abbas, Chemical Engineering & Processing: Process Intensification, 2018, 127, 10-16. https://doi.org/10.1016/j.cep.2018.03.013
  27. J. M. Grau, J. M. Bisang, J. Chem. Technol. Biotechnol, 2001, 76(2), 161-168. https://doi.org/10.1002/jctb.366
  28. J. M. Grau, J. M. Bisang, J. Chem. Technol. Biotechnol, 2003, 78(10), 1032-1037. https://doi.org/10.1002/jctb.899
  29. G. W. Reade, P. Bond, C. P. de Leon, F. C. Walsh, J. Chem. Techno.l Biotechnol, 2004, 79(9), 946-953. https://doi.org/10.1002/jctb.1097
  30. J. M. Grau, J. M. Bisang, J. Appl. Electrochem, 2007, 37(2), 275-282. https://doi.org/10.1007/s10800-006-9254-4
  31. J. M. Grau, J. M. Bisang, J. Chem. Technol. Biotechnol, 2009, 84(7), 1084-1089. https://doi.org/10.1002/jctb.2199
  32. A. H. Abbar, R. H. Salman, A. S. Abbas, Environmental Technology & Innovation, 2019, 13, 233-243. https://doi.org/10.1016/j.eti.2018.12.005
  33. R. E. Sioda, J. Electroanalytical. Chem. and Interfacial Electrochem., 1976, 70(1), 49-54. https://doi.org/10.1016/S0022-0728(76)80260-4
  34. D. Green, R. Perry, Perry's Chemical Engineers' Handbook, 8thed. McGraw-Hill, New York, 2008.
  35. M. F. Alebrahim, I. A. Khattab, Q. Cai, M. Sanduk, Egyptian journal of petroleum, 2017, 26(2), 225-234. https://doi.org/10.1016/j.ejpe.2015.03.017
  36. A. T. S. Walker, A. A. Wragg, Electrochim. Acta, 1977, 22(10), 1129-1134. https://doi.org/10.1016/0013-4686(77)80051-0
  37. V. D. Stankovic, A. A. Wragg, J. Appl. Electrochem, 1995, 25(6), 565-573 https://doi.org/10.1007/BF00573214
  38. G. W. Reade, A. H. Nahle, P. Bond, J. M. Friedrich, F. C. Walsh, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2004, 79(9), 935-945.
  39. I. A. Khattab, M. F. Alebrahim, M. Sanduk, Research Journal of Pharmaceutical Biological and Chemical Sciences, 2017, 8(3), 273-282.
  40. D.M. Ayres, A. P. Davis, P.M. Gietka, Removing Heavy Metals from Wastewater, Engineering Research Centre Report, 1994, 90.
  41. F. C. Walsh, Pure and applied chemistry, 2001, 73(12), 1819-1837. https://doi.org/10.1351/pac200173121819