DOI QR코드

DOI QR Code

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun (Department of Chemistry, Incheon National University) ;
  • Oh, Si Hyoung (Center for Energy Storage Research, Korea Institute of Science and Technology) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University)
  • Received : 2020.03.16
  • Accepted : 2020.08.20
  • Published : 2021.02.28

Abstract

Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

References

  1. J.W. Fergus, J. Power Sources, 2010, 195(4), 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
  2. B. Scrosati, J. Hassoun and Y.-K. Sun, Energy Environ. Sci, 2011, 4(9), 3287-3295. https://doi.org/10.1039/c1ee01388b
  3. Y.-X. Yin, S. Xin, Y.-G. Guo and L.-J. Wan, Angew. Chem. Int. Ed., 2013, 52(50), 13186-13200. https://doi.org/10.1002/anie.201304762
  4. X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.-W. Nam and X.-Q. Yang, Adv. Energy Mater., 2014, 4(5), 1300950. https://doi.org/10.1002/aenm.201300950
  5. S. Zeng, L. Li, L. Xie, D. Zhao, N. Wang and S. Chen, ChemSusChem, 2017, 10(17), 3378-3386. https://doi.org/10.1002/cssc.201700913
  6. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, Nat. Mater., 2009, 8(4), 320-324. https://doi.org/10.1038/nmat2418
  7. J.H. Lee, C.S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung and Y.-K. Sun, Energy Environ. Sci, 2016, 9(6), 2152-2158. https://doi.org/10.1039/c6ee01134a
  8. S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim and Y.-K. Sun, ACS Energy Lett., 2017, 2(1), 196-223. https://doi.org/10.1021/acsenergylett.6b00594
  9. D. Zeng, J. Cabana, J. Breger, W.-S. Yoon and C.P. Grey, Chem. Mater., 2007, 19(25), 6277-6289. https://doi.org/10.1021/cm702241a
  10. H.-J. Noh, S. Youn, C.S. Yoon and Y.-K. Sun, J. Power Sources, 2013, 233, 121-130. https://doi.org/10.1016/j.jpowsour.2013.01.063
  11. S. Hwang, S.M. Kim, S.-M. Bak, K.Y. Chung and W. Chang, Chem. Mater., 2015, 27(17), 6044-6052. https://doi.org/10.1021/acs.chemmater.5b02457
  12. C. Liang, F. Kong, R.C. Longo, S. Kc, J.-S. Kim, S. Jeon, S. Choi and K. Cho, J. Phys. Chem. C, 2016, 120(12), 6383-6393. https://doi.org/10.1021/acs.jpcc.6b00369
  13. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.-T. Myung and K. Amine, Nat. Mater., 2012, 11(11), 942-947. https://doi.org/10.1038/nmat3435
  14. W. Cho, S.-M. Kim, J.H. Song, T. Yim, S.-G. Woo, K.-W. Lee, J.-S. Kim and Y.-J. Kim, J. Power Sources, 2015, 282, 45-50. https://doi.org/10.1016/j.jpowsour.2014.12.128
  15. S. Neudeck, F. Walther, T. Bergfeldt, C. Suchomski, M. Rohnke, P. Hartmann, J. Janek and T. Brezesinski, ACS Appl. Mater. Interfaces, 2018, 10(24), 20487-20498. https://doi.org/10.1021/acsami.8b04405
  16. L. Zhang, T. Dong, X. Yu, Y. Dong, Z. Zhao and H. Li, j.materresbull, 2012, 47(11), 3269-3272.
  17. T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu and Y.-J. Kim, J. Power Sources, 2016, 302, 431-438. https://doi.org/10.1016/j.jpowsour.2015.10.051
  18. K. Heo, J.-S. Lee, H.-S. Kim, J. Kim and J. Lim, J. Electrochem. Soc., 2017, 164(12), A2398-A2402. https://doi.org/10.1149/2.0791712jes
  19. S. Dong, Y. Zhou, C. Hai, J. Zeng, Y. Sun, Y. Shen, X. Li, X. Ren, G. Qi, X. Zhang and L. Ma, Ceramics International, 2019, 45(1), 144-152. https://doi.org/10.1016/j.ceramint.2018.09.145
  20. J.-S. Lee, K. Heo, H.-S. Kim, M.-Y. Kim, J. Kim, S.-W. Kang and J. Lim, J. Alloys Compd., 2019, 781, 553-559. https://doi.org/10.1016/j.jallcom.2018.12.025
  21. J. Li, L.E. Downie, L. Ma, W. Qiu and J.R. Dahn, J. Electrochem. Soc., 2015, 162(7), A1401-A1408. https://doi.org/10.1149/2.1011507jes
  22. M. Wang, R. Zhang, Y. Gong, Y. Su, D. Xiang, L. Chen, Y. Chen, M. Luo and M. Chu, Solid State Ion., 2017, 312, 53-60. https://doi.org/10.1016/j.ssi.2017.10.017
  23. A. Iqbal, L. Chen, Y. Chen, Y.-x. Gao, F. Chen and D.-c. Li, Int. J. Miner. Metall. Mater, 2018, 25(12), 1473-1481. https://doi.org/10.1007/s12613-018-1702-8
  24. Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu and Z. Lu, ACS Appl. Mater. Interfaces, 2019, 11(13), 12594-12604. https://doi.org/10.1021/acsami.9b04050
  25. H.Q. Pham, E.-H. Hwang, Y.-G. Kwon and S.-W. Song, ChemComm, 2019, 55(9), 1256-1258.
  26. L. Wu, K.-W. Nam, X. Wang, Y. Zhou, J.-C. Zheng, X.-Q. Yang and Y. Zhu, Chem. Mater., 2011, 23(17), 3953-3960. https://doi.org/10.1021/cm201452q
  27. S. Hwang, S.M. Kim, S.-M. Bak, B.-W. Cho, K.Y. Chung, J.Y. Lee, W. Chang and E.A. Stach, ACS Appl. Mater. Interfaces, 2014, 6(17), 15140-15147. https://doi.org/10.1021/am503278f
  28. H.-R. Kim, S.-G. Woo, J.-H. Kim, W. Cho and Y.-J. Kim, J. Electroanal. Chem., 2016, 782, 168-173. https://doi.org/10.1016/j.jelechem.2016.10.032
  29. L. Liang, G. Hu, F. Jiang and Y. Cao, J. Alloys Compd., 2016, 657, 570-581. https://doi.org/10.1016/j.jallcom.2015.10.177
  30. F. Schipper, E.M. Erickson, C. Erk, J.-Y. Shin, F.F. Chesneau and D. Aurbach, J. Electrochem. Soc., 2017, 164(1), A6220-A6228. https://doi.org/10.1149/2.0351701jes
  31. J. Cho, Y.J. Kim, T.-J. Kim and B. Park, Angew. Chem. Int. Ed., 2001, 40(18), 3367-3369. https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  32. D. Li, Y. Kato, K. Kobayakawa, H. Noguchi and Y. Sato, J. Power Sources, 2006, 160(2), 1342-1348. https://doi.org/10.1016/j.jpowsour.2006.02.080
  33. S. Neudeck, F. Strauss, G. Garcia, H. Wolf, J. Janek, P. Hartmann and T. Brezesinski, ChemComm, 2019, 55(15), 2174-2177.
  34. H. Zhang, J. Xu and J. Zhang, Front. Mater., 2019, 6(309),1-10. https://doi.org/10.3389/fmats.2019.00001
  35. V.-C. Ho, S. Jeong, T. Yim and J. Mun, J. Power Sources, 2020, 450, 227625. https://doi.org/10.1016/j.jpowsour.2019.227625
  36. X. Lu, X. Li, Z. Wang, H. Guo, G. Yan and X. Yin, Appl. Surf. Sci., 2014, 297, 182-187. https://doi.org/10.1016/j.apsusc.2014.01.121
  37. H. Kim, M.G. Kim, H.Y. Jeong, H. Nam and J. Cho, Nano Lett., 2015, 15(3), 2111-2119. https://doi.org/10.1021/acs.nanolett.5b00045
  38. B.-J. Chae and T. Yim, J. Power Sources, 2017, 360, 480-487. https://doi.org/10.1016/j.jpowsour.2017.06.037
  39. B.-J. Chae, J.H. Park, H.J. Song, S.H. Jang, K. Jung, Y.D. Park and T. Yim, Electrochim. Acta, 2018, 290, 465-473. https://doi.org/10.1016/j.electacta.2018.09.103
  40. H.J. Song, S.H. Jang, J. Ahn, S.H. Oh and T. Yim, J. Power Sources, 2019, 416, 1-8. https://doi.org/10.1016/j.jpowsour.2019.01.050
  41. Y.-K. Han, J. Yoo and T. Yim, Electrochim. Acta, 2016, 215, 455-465. https://doi.org/10.1016/j.electacta.2016.08.131
  42. K. Kim, Y. Kim, S. Park, H.J. Yang, S.J. Park, K. Shin, J.-J. Woo, S. Kim, S.Y. Hong and N.-S. Choi, J. Power Sources, 2018, 396, 276-287. https://doi.org/10.1016/j.jpowsour.2018.06.046
  43. B. Zhang, N. Laszczynski and B.L. Lucht, Electrochim. Acta, 2018, 281, 405-409. https://doi.org/10.1016/j.electacta.2018.05.203
  44. Y. Lin, X. Yue, H. Zhang, L. Yu, W. Fan and T. Xie, Electrochim. Acta, 2019, 300, 202-207. https://doi.org/10.1016/j.electacta.2019.01.120
  45. S. Wang, S. Chen, W. Gao, L. Liu and S. Zhang, J. Power Sources, 2019, 423, 90-97. https://doi.org/10.1016/j.jpowsour.2019.03.046
  46. K. Beltrop, S. Klein, R. Nolle, A. Wilken, J.J. Lee, T.K.J. Koster, J. Reiter, L. Tao, C. Liang, M. Winter, X. Qi and T. Placke, Chem. Mater., 2018, 30(8), 2726-2741. https://doi.org/10.1021/acs.chemmater.8b00413
  47. S.H. Jang, K. Jung and T. Yim, Curr. Appl. Phys., 2018, 18(11), 1345-1351. https://doi.org/10.1016/j.cap.2018.07.016
  48. C.-G. Shi, C.-H. Shen, X.-X. Peng, C.-X. Luo, L.-F. Shen, W.-J. Sheng, J.-J. Fan, Q. Wang, S.-J. Zhang, B.-B. Xu, J.-J. Xian, Y.-M. Wei, L. Huang, J.-T. Li and S.-G. Sun, Nat. Energy, 2019, 65, 104084.
  49. S. Li, T. Yang, W. Wang, J. Lu, X. Zhao, W. Fan, X. Zuo and J. Nan, Electrochim. Acta, 2020, 352, 136492. https://doi.org/10.1016/j.electacta.2020.136492
  50. L. Liu, W. Gao, Y. Cui and S. Chen, J. Alloys Compd., 2020, 820, 153069. https://doi.org/10.1016/j.jallcom.2019.153069
  51. Y.-M. Song, J.-G. Han, S. Park, K.T. Lee and N.-S. Choi, J. Mater. Chem. A, 2014, 2(25), 9506-9513. https://doi.org/10.1039/C4TA01129E
  52. Z. Zhou, Y. Ma, L. Wang, P. Zuo, X. Cheng, C. Du, G. Yin and Y. Gao, Electrochim. Acta, 2016, 216, 44-50. https://doi.org/10.1016/j.electacta.2016.09.008
  53. C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao and D.P. Abraham, J. Electrochem. Soc., 2017, 164(7), A1579-A1586. https://doi.org/10.1149/2.1101707jes
  54. N. von Aspern, S. Roser, B. Rezaei Rad, P. Murmann, B. Streipert, X. Monnighoff, S.D. Tillmann, M. Shevchuk, O. Stubbmann-Kazakova, G.-V. Roschenthaler, S. Nowak, M. Winter and I. Cekic-Laskovic, J. Fluorine Chem., 2017, 198, 24-33. https://doi.org/10.1016/j.jfluchem.2017.02.005
  55. L. Wang, Y. Ma, Q. Li, Y. Cui, P. Wang, X. Cheng, P. Zuo, C. Du, Y. Gao and G. Yin, Electrochim. Acta, 2017, 243, 72-81. https://doi.org/10.1016/j.electacta.2017.05.008
  56. S. Tan, Z. Zhang, Y. Li, Y. Li, J. Zheng, Z. Zhou and Y. Yang, J. Electrochem. Soc., 2013, 160(2), A285-A292. https://doi.org/10.1149/2.066302jes
  57. S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li and W. Li, Electrochim. Acta, 2014, 147, 565-571. https://doi.org/10.1016/j.electacta.2014.09.157
  58. S. Mai, M. Xu, X. Liao, L. Xing and W. Li, J. Power Sources, 2015, 273, 816-822. https://doi.org/10.1016/j.jpowsour.2014.09.171
  59. K. Abe, Y. Ushigoe, H. Yoshitake and M. Yoshio, J. Power Sources, 2006, 153(2), 328-335. https://doi.org/10.1016/j.jpowsour.2005.05.067
  60. X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu and J. Nan, J. Power Sources, 2013, 229, 308-312. https://doi.org/10.1016/j.jpowsour.2012.12.056
  61. D. Aurbach, Y Ein?Ely and A Zaban, J. Electrochem. Soc., 1994, 141(1), L1-L3. https://doi.org/10.1149/1.2054718
  62. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure and D.L. Wood, Carbon, 2016, 105, 52-76. https://doi.org/10.1016/j.carbon.2016.04.008
  63. D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson and J.O. Thomas, J. Mater. Chem., 2009, 19(1), 82-88. https://doi.org/10.1039/b813099j
  64. M. Xu, W. Li and B.L. Lucht, J. Power Sources, 2009, 193(2), 804-809. https://doi.org/10.1016/j.jpowsour.2009.03.067
  65. J.-G. Han, I. Park, J. Cha, S. Park, S. Park, S. Myeong, W. Cho, S.-S. Kim, S.Y. Hong, J. Cho and N.-S. Choi, ChemElectroChem, 2017, 4(1), 56-65. https://doi.org/10.1002/celc.201600297
  66. T. Yim and Y.-K. Han, ACS Appl. Mater. Interfaces, 2017, 9(38), 32851-32858. https://doi.org/10.1021/acsami.7b11309
  67. Y. Lin, H. Zhang, X. Yue, L. Yu and W. Fan, J. Electroanal. Chem., 2019, 832, 408-416. https://doi.org/10.1016/j.jelechem.2018.11.046