Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun (Department of Chemistry, Incheon National University) ;
  • Oh, Si Hyoung (Center for Energy Storage Research, Korea Institute of Science and Technology) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University)
  • Received : 2020.03.16
  • Accepted : 2020.08.20
  • Published : 2021.02.28


Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.


  1. J.W. Fergus, J. Power Sources, 2010, 195(4), 939-954.
  2. B. Scrosati, J. Hassoun and Y.-K. Sun, Energy Environ. Sci, 2011, 4(9), 3287-3295.
  3. Y.-X. Yin, S. Xin, Y.-G. Guo and L.-J. Wan, Angew. Chem. Int. Ed., 2013, 52(50), 13186-13200.
  4. X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.-W. Nam and X.-Q. Yang, Adv. Energy Mater., 2014, 4(5), 1300950.
  5. S. Zeng, L. Li, L. Xie, D. Zhao, N. Wang and S. Chen, ChemSusChem, 2017, 10(17), 3378-3386.
  6. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, Nat. Mater., 2009, 8(4), 320-324.
  7. J.H. Lee, C.S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung and Y.-K. Sun, Energy Environ. Sci, 2016, 9(6), 2152-2158.
  8. S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim and Y.-K. Sun, ACS Energy Lett., 2017, 2(1), 196-223.
  9. D. Zeng, J. Cabana, J. Breger, W.-S. Yoon and C.P. Grey, Chem. Mater., 2007, 19(25), 6277-6289.
  10. H.-J. Noh, S. Youn, C.S. Yoon and Y.-K. Sun, J. Power Sources, 2013, 233, 121-130.
  11. S. Hwang, S.M. Kim, S.-M. Bak, K.Y. Chung and W. Chang, Chem. Mater., 2015, 27(17), 6044-6052.
  12. C. Liang, F. Kong, R.C. Longo, S. Kc, J.-S. Kim, S. Jeon, S. Choi and K. Cho, J. Phys. Chem. C, 2016, 120(12), 6383-6393.
  13. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.-T. Myung and K. Amine, Nat. Mater., 2012, 11(11), 942-947.
  14. W. Cho, S.-M. Kim, J.H. Song, T. Yim, S.-G. Woo, K.-W. Lee, J.-S. Kim and Y.-J. Kim, J. Power Sources, 2015, 282, 45-50.
  15. S. Neudeck, F. Walther, T. Bergfeldt, C. Suchomski, M. Rohnke, P. Hartmann, J. Janek and T. Brezesinski, ACS Appl. Mater. Interfaces, 2018, 10(24), 20487-20498.
  16. L. Zhang, T. Dong, X. Yu, Y. Dong, Z. Zhao and H. Li, j.materresbull, 2012, 47(11), 3269-3272.
  17. T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu and Y.-J. Kim, J. Power Sources, 2016, 302, 431-438.
  18. K. Heo, J.-S. Lee, H.-S. Kim, J. Kim and J. Lim, J. Electrochem. Soc., 2017, 164(12), A2398-A2402.
  19. S. Dong, Y. Zhou, C. Hai, J. Zeng, Y. Sun, Y. Shen, X. Li, X. Ren, G. Qi, X. Zhang and L. Ma, Ceramics International, 2019, 45(1), 144-152.
  20. J.-S. Lee, K. Heo, H.-S. Kim, M.-Y. Kim, J. Kim, S.-W. Kang and J. Lim, J. Alloys Compd., 2019, 781, 553-559.
  21. J. Li, L.E. Downie, L. Ma, W. Qiu and J.R. Dahn, J. Electrochem. Soc., 2015, 162(7), A1401-A1408.
  22. M. Wang, R. Zhang, Y. Gong, Y. Su, D. Xiang, L. Chen, Y. Chen, M. Luo and M. Chu, Solid State Ion., 2017, 312, 53-60.
  23. A. Iqbal, L. Chen, Y. Chen, Y.-x. Gao, F. Chen and D.-c. Li, Int. J. Miner. Metall. Mater, 2018, 25(12), 1473-1481.
  24. Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu and Z. Lu, ACS Appl. Mater. Interfaces, 2019, 11(13), 12594-12604.
  25. H.Q. Pham, E.-H. Hwang, Y.-G. Kwon and S.-W. Song, ChemComm, 2019, 55(9), 1256-1258.
  26. L. Wu, K.-W. Nam, X. Wang, Y. Zhou, J.-C. Zheng, X.-Q. Yang and Y. Zhu, Chem. Mater., 2011, 23(17), 3953-3960.
  27. S. Hwang, S.M. Kim, S.-M. Bak, B.-W. Cho, K.Y. Chung, J.Y. Lee, W. Chang and E.A. Stach, ACS Appl. Mater. Interfaces, 2014, 6(17), 15140-15147.
  28. H.-R. Kim, S.-G. Woo, J.-H. Kim, W. Cho and Y.-J. Kim, J. Electroanal. Chem., 2016, 782, 168-173.
  29. L. Liang, G. Hu, F. Jiang and Y. Cao, J. Alloys Compd., 2016, 657, 570-581.
  30. F. Schipper, E.M. Erickson, C. Erk, J.-Y. Shin, F.F. Chesneau and D. Aurbach, J. Electrochem. Soc., 2017, 164(1), A6220-A6228.
  31. J. Cho, Y.J. Kim, T.-J. Kim and B. Park, Angew. Chem. Int. Ed., 2001, 40(18), 3367-3369.<3367::AID-ANIE3367>3.0.CO;2-A
  32. D. Li, Y. Kato, K. Kobayakawa, H. Noguchi and Y. Sato, J. Power Sources, 2006, 160(2), 1342-1348.
  33. S. Neudeck, F. Strauss, G. Garcia, H. Wolf, J. Janek, P. Hartmann and T. Brezesinski, ChemComm, 2019, 55(15), 2174-2177.
  34. H. Zhang, J. Xu and J. Zhang, Front. Mater., 2019, 6(309),1-10.
  35. V.-C. Ho, S. Jeong, T. Yim and J. Mun, J. Power Sources, 2020, 450, 227625.
  36. X. Lu, X. Li, Z. Wang, H. Guo, G. Yan and X. Yin, Appl. Surf. Sci., 2014, 297, 182-187.
  37. H. Kim, M.G. Kim, H.Y. Jeong, H. Nam and J. Cho, Nano Lett., 2015, 15(3), 2111-2119.
  38. B.-J. Chae and T. Yim, J. Power Sources, 2017, 360, 480-487.
  39. B.-J. Chae, J.H. Park, H.J. Song, S.H. Jang, K. Jung, Y.D. Park and T. Yim, Electrochim. Acta, 2018, 290, 465-473.
  40. H.J. Song, S.H. Jang, J. Ahn, S.H. Oh and T. Yim, J. Power Sources, 2019, 416, 1-8.
  41. Y.-K. Han, J. Yoo and T. Yim, Electrochim. Acta, 2016, 215, 455-465.
  42. K. Kim, Y. Kim, S. Park, H.J. Yang, S.J. Park, K. Shin, J.-J. Woo, S. Kim, S.Y. Hong and N.-S. Choi, J. Power Sources, 2018, 396, 276-287.
  43. B. Zhang, N. Laszczynski and B.L. Lucht, Electrochim. Acta, 2018, 281, 405-409.
  44. Y. Lin, X. Yue, H. Zhang, L. Yu, W. Fan and T. Xie, Electrochim. Acta, 2019, 300, 202-207.
  45. S. Wang, S. Chen, W. Gao, L. Liu and S. Zhang, J. Power Sources, 2019, 423, 90-97.
  46. K. Beltrop, S. Klein, R. Nolle, A. Wilken, J.J. Lee, T.K.J. Koster, J. Reiter, L. Tao, C. Liang, M. Winter, X. Qi and T. Placke, Chem. Mater., 2018, 30(8), 2726-2741.
  47. S.H. Jang, K. Jung and T. Yim, Curr. Appl. Phys., 2018, 18(11), 1345-1351.
  48. C.-G. Shi, C.-H. Shen, X.-X. Peng, C.-X. Luo, L.-F. Shen, W.-J. Sheng, J.-J. Fan, Q. Wang, S.-J. Zhang, B.-B. Xu, J.-J. Xian, Y.-M. Wei, L. Huang, J.-T. Li and S.-G. Sun, Nat. Energy, 2019, 65, 104084.
  49. S. Li, T. Yang, W. Wang, J. Lu, X. Zhao, W. Fan, X. Zuo and J. Nan, Electrochim. Acta, 2020, 352, 136492.
  50. L. Liu, W. Gao, Y. Cui and S. Chen, J. Alloys Compd., 2020, 820, 153069.
  51. Y.-M. Song, J.-G. Han, S. Park, K.T. Lee and N.-S. Choi, J. Mater. Chem. A, 2014, 2(25), 9506-9513.
  52. Z. Zhou, Y. Ma, L. Wang, P. Zuo, X. Cheng, C. Du, G. Yin and Y. Gao, Electrochim. Acta, 2016, 216, 44-50.
  53. C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao and D.P. Abraham, J. Electrochem. Soc., 2017, 164(7), A1579-A1586.
  54. N. von Aspern, S. Roser, B. Rezaei Rad, P. Murmann, B. Streipert, X. Monnighoff, S.D. Tillmann, M. Shevchuk, O. Stubbmann-Kazakova, G.-V. Roschenthaler, S. Nowak, M. Winter and I. Cekic-Laskovic, J. Fluorine Chem., 2017, 198, 24-33.
  55. L. Wang, Y. Ma, Q. Li, Y. Cui, P. Wang, X. Cheng, P. Zuo, C. Du, Y. Gao and G. Yin, Electrochim. Acta, 2017, 243, 72-81.
  56. S. Tan, Z. Zhang, Y. Li, Y. Li, J. Zheng, Z. Zhou and Y. Yang, J. Electrochem. Soc., 2013, 160(2), A285-A292.
  57. S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li and W. Li, Electrochim. Acta, 2014, 147, 565-571.
  58. S. Mai, M. Xu, X. Liao, L. Xing and W. Li, J. Power Sources, 2015, 273, 816-822.
  59. K. Abe, Y. Ushigoe, H. Yoshitake and M. Yoshio, J. Power Sources, 2006, 153(2), 328-335.
  60. X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu and J. Nan, J. Power Sources, 2013, 229, 308-312.
  61. D. Aurbach, Y Ein?Ely and A Zaban, J. Electrochem. Soc., 1994, 141(1), L1-L3.
  62. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure and D.L. Wood, Carbon, 2016, 105, 52-76.
  63. D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson and J.O. Thomas, J. Mater. Chem., 2009, 19(1), 82-88.
  64. M. Xu, W. Li and B.L. Lucht, J. Power Sources, 2009, 193(2), 804-809.
  65. J.-G. Han, I. Park, J. Cha, S. Park, S. Park, S. Myeong, W. Cho, S.-S. Kim, S.Y. Hong, J. Cho and N.-S. Choi, ChemElectroChem, 2017, 4(1), 56-65.
  66. T. Yim and Y.-K. Han, ACS Appl. Mater. Interfaces, 2017, 9(38), 32851-32858.
  67. Y. Lin, H. Zhang, X. Yue, L. Yu and W. Fan, J. Electroanal. Chem., 2019, 832, 408-416.