Acknowledgement
This work was financially supported by China Postdoctoral Science Foundation 2020M670082.
References
- N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc. 146 (2018), no. 3, 1047-1057. https://doi.org/10.1090/proc/13654
- K. Lee and C. A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations 262 (2017), no. 6, 3467-3487. https://doi.org/10.1016/j.jde.2016.04.029
- K. Lee, N.-T. Nguyen, and Y. Yang, Topological stability and spectral decomposition for homeomorphisms on noncompact spaces, Discrete Contin. Dyn. Syst. 38 (2018), no. 5, 2487-2503. https://doi.org/10.3934/dcds.2018103
- P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math. 110 (2008), no. 2, 451-460. https://doi.org/10.4064/cm110-2-8
- A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst. 29 (2014), no. 3, 337-351. https://doi.org/10.1080/14689367.2014.902037
- S. Yu. Pilyugin, Inverse shadowing in group actions, Dyn. Syst. 32 (2017), no. 2, 198-210. https://doi.org/10.1080/14689367.2016.1173651
- S. Yu. Pilyugin, Shadowing in actions of some abelian groups, Fund. Math. 179 (2003), no. 1, 83-96. https://doi.org/10.4064/fm179-1-7
- P. Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71-78. https://doi.org/10.1016/0040-9383(70)90051-0
- P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., 668, Springer, Berlin, 1978.