• Title/Summary/Keyword: group actions

Search Result 431, Processing Time 0.025 seconds

FREE ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

  • Oh, Myung Sung;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We study free actions of finite groups on the 3-dimensional nilmanifold and classify all such group actions, up to topological conjugacy. This work generalize Theorem 3.10 of [1].

  • PDF

CONTINUOUS ORBIT EQUIVALENCES ON SELF-SIMILAR GROUPS

  • Yi, Inhyeop
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.133-146
    • /
    • 2021
  • For pseudo-free and recurrent self-similar groups, we show that continuous orbit equivalence of inverse semigroup partial actions implies continuous orbit equivalence of group actions. Conversely, if group actions are continuous orbit equivalent, and the induced homeomorphism commutes with the shift maps on their groupoids, we obtain continuous orbit equivalence of inverse semigroup partial actions.

TOPOLOGICAL STABILITY AND SHADOWING PROPERTY FOR GROUP ACTIONS ON METRIC SPACES

  • Yang, Yinong
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.439-449
    • /
    • 2021
  • In this paper, we introduce the notions of expansiveness, shadowing property and topological stability for group actions on metric spaces and give a version of Walters's stability theorem for group actions on locally compact metric spaces. Moreover, we show that if G is a finitely generated virtually nilpotent group and there exists g ∈ G such that if Tg is expansive and has the shadowing property, then T is topologically stable.

FINITE GROUP ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

  • Goo, Daehwan;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.223-232
    • /
    • 2005
  • We study only free actions of finite groups G on the 3-dimensional nilmanifold, up to topological conjugacy which yields an infra-nilmanifold of type 2.

  • PDF

NONABELIAN GROUP ACTIONS ON 3-DIMENSIONAL NILMANIFOLDS WITH THE FIRST HOMOLOGY ℤ2⊕ℤ2

  • Han, Mina;Koo, Daehwan;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.365-381
    • /
    • 2019
  • We study free actions of finite nonabelian groups on 3-dimensional nilmanifolds with the first homology ${\mathbb{Z}}^2{\oplus}{\mathbb{Z}}_2$, up to topological conjugacy. We show that there exist three kinds of nonabelian group actions in ${\pi}_1$, two in ${\pi}_2$ or ${\pi}_{5,i}$(i = 1, 2, 3), one in the other cases, and clarify what those groups are.

FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS

  • Choi, Dong-Soon;Shin, Joon-Kook
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.795-826
    • /
    • 2005
  • We study free actions of finite abelian groups on 3­dimensional nilmanifolds. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy. All such actions are completely classified.

Finite, Fiber-preserving Group Actions on Elliptic 3-manifolds

  • Peet, Benjamin
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.363-388
    • /
    • 2022
  • In two previous papers the author presented a general construction of finite, fiber- and orientation-preserving group actions on orientable Seifert manifolds. In this paper we restrict our attention to elliptic 3-manifolds. For illustration of our methods a constructive proof is given that orientation-reversing and fiber-preserving diffeomorphisms of Seifert manifolds do not exist for nonzero Euler class, in particular elliptic 3-manifolds. Each type of elliptic 3-manifold is then considered and the possible group actions that fit the given construction. This is shown to be all but a few cases that have been considered elsewhere. Finally, a presentation for the quotient space under such an action is constructed and a specific example is generated.

GROUP ACTIONS IN A REGULAR RING

  • HAN, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.807-815
    • /
    • 2005
  • Let R be a ring with identity, X the set of all nonzero, nonunits of Rand G the group of all units of R. We will consider two group actions on X by G, the regular action and the conjugate action. In this paper, by investigating two group actions we can have some results as follows: First, if G is a finitely generated abelian group, then the orbit O(x) under the regular action on X by G is finite for all nilpotents x $\in$ X. Secondly, if F is a field in which 2 is a unit and F $\backslash\;\{0\}$ is a finitley generated abelian group, then F is finite. Finally, if G in a unit-regular ring R is a torsion group and 2 is a unit in R, then the conjugate action on X by G is trivial if and only if G is abelian if and only if R is commutative.

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.