DOI QR코드

DOI QR Code

EVERY ABELIAN GROUP IS THE CLASS GROUP OF A RING OF KRULL TYPE

  • Chang, Gyu Whan (Department of Mathematics Education Incheon National University)
  • Received : 2020.01.08
  • Accepted : 2020.06.25
  • Published : 2021.01.01

Abstract

Let Cl(A) denote the class group of an arbitrary integral domain A introduced by Bouvier in 1982. Then Cl(A) is the ideal class (resp., divisor class) group of A if A is a Dedekind or a Prüfer (resp., Krull) domain. Let G be an abelian group. In this paper, we show that there is a ring of Krull type D such that Cl(D) = G but D is not a Krull domain. We then use this ring to construct a Prüfer ring of Krull type E such that Cl(E) = G but E is not a Dedekind domain. This is a generalization of Claborn's result that every abelian group is the ideal class group of a Dedekind domain.

Keywords

Acknowledgement

The author would like to thank the anonymous referee for his/her helpful comments and suggestions which improved the original version of this paper greatly. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B06029867).

References

  1. D. D. Anderson, D. F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), no. 1, 17-37. https://doi.org/10.1016/0022-4049(91)90046-5
  2. D. D. Anderson, G. W. Chang, and M. Zafrullah, Integral domains of finite t-character, J. Algebra 396 (2013), 169-183. https://doi.org/10.1016/j.jalgebra.2013.08.014
  3. D. D. Anderson, M. Fontana, and M. Zafrullah, Some remarks on Prufer ✭-multiplication domains and class groups, J. Algebra 319 (2008), no. 1, 272-295. https://doi.org/10.1016/j.jalgebra.2007.10.006
  4. D. D. Anderson, E. G. Houston, and M. Zafrullah, t-linked extensions, the t-class group, and Nagata's theorem, J. Pure Appl. Algebra 86 (1993), no. 2, 109-124. https://doi.org/10.1016/0022-4049(93)90097-D
  5. D. F. Anderson and A. Ryckaert, The class group of D + M, J. Pure Appl. Algebra 52 (1988), no. 3, 199-212. https://doi.org/10.1016/0022-4049(88)90091-6
  6. J. T. Arnold and R. Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc. 24 (1970), 556-562. https://doi.org/10.2307/2037408
  7. A. Bouvier, Le groupe des classes d'un anneau integre, 107 eme Congres des Societes Savantes, Brest fasc. IV (1982), 85-92.
  8. A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grece (N.S.) 29 (1988), 45-59.
  9. G. W. Chang, H. Kim, and J. W. Lim, Integral domains in which every nonzero t-locally principal ideal is t-invertible, Comm. Algebra 41 (2013), no. 10, 3805-3819. https://doi.org/10.1080/00927872.2012.678022
  10. L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222. http://projecteuclid.org/euclid.pjm/1102994263 https://doi.org/10.2140/pjm.1966.18.219
  11. D. Costa, J. L. Mott, and M. Zafrullah, The construction D + XDs[X], J. Algebra 53 (1978), no. 2, 423-439. https://doi.org/10.1016/0021-8693(78)90289-2
  12. E. D. Davis, Overrings of commutative rings. II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196-212. https://doi.org/10.2307/1993701
  13. D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. https://doi.org/10.1080/00927878908823879
  14. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), no. 2-3, 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
  15. M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prufer integral closure, Comm. Algebra 26 (1998), no. 4, 1017-1039. https://doi.org/10.1080/00927879808826181
  16. R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
  17. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  18. M. Griffin, Some results on v-multiplication rings, Canadian J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8
  19. M. Griffin, Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1-27. https://doi.org/10.1515/crll.1968.229.1
  20. J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44. https://doi.org/10.1016/0022-4049(80)90114-0
  21. W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164-170. https://doi.org/10.1112/S0025579300002527
  22. E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), no. 2, 291-300. https://doi.org/10.1307/mmj/1029003756
  23. E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
  24. B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv, J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  25. B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
  26. S. Malik, Properties of commutative group rings and semigroup rings, in Algebra and its applications (New Delhi, 1981), 133-146, Lecture Notes in Pure and Appl. Math., 91, Dekker, New York, 1984.
  27. J. L. Mott and M. Zafrullah, On Prufer v-multiplication domains, Manuscripta Math. 35 (1981), no. 1-2, 1-26. https://doi.org/10.1007/BF01168446