Acknowledgement
The author would like to thank the anonymous referee for his/her helpful comments and suggestions which improved the original version of this paper greatly. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B06029867).
References
- D. D. Anderson, D. F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), no. 1, 17-37. https://doi.org/10.1016/0022-4049(91)90046-5
- D. D. Anderson, G. W. Chang, and M. Zafrullah, Integral domains of finite t-character, J. Algebra 396 (2013), 169-183. https://doi.org/10.1016/j.jalgebra.2013.08.014
- D. D. Anderson, M. Fontana, and M. Zafrullah, Some remarks on Prufer ✭-multiplication domains and class groups, J. Algebra 319 (2008), no. 1, 272-295. https://doi.org/10.1016/j.jalgebra.2007.10.006
- D. D. Anderson, E. G. Houston, and M. Zafrullah, t-linked extensions, the t-class group, and Nagata's theorem, J. Pure Appl. Algebra 86 (1993), no. 2, 109-124. https://doi.org/10.1016/0022-4049(93)90097-D
- D. F. Anderson and A. Ryckaert, The class group of D + M, J. Pure Appl. Algebra 52 (1988), no. 3, 199-212. https://doi.org/10.1016/0022-4049(88)90091-6
- J. T. Arnold and R. Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc. 24 (1970), 556-562. https://doi.org/10.2307/2037408
- A. Bouvier, Le groupe des classes d'un anneau integre, 107 eme Congres des Societes Savantes, Brest fasc. IV (1982), 85-92.
- A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grece (N.S.) 29 (1988), 45-59.
- G. W. Chang, H. Kim, and J. W. Lim, Integral domains in which every nonzero t-locally principal ideal is t-invertible, Comm. Algebra 41 (2013), no. 10, 3805-3819. https://doi.org/10.1080/00927872.2012.678022
- L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222. http://projecteuclid.org/euclid.pjm/1102994263 https://doi.org/10.2140/pjm.1966.18.219
- D. Costa, J. L. Mott, and M. Zafrullah, The construction D + XDs[X], J. Algebra 53 (1978), no. 2, 423-439. https://doi.org/10.1016/0021-8693(78)90289-2
- E. D. Davis, Overrings of commutative rings. II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196-212. https://doi.org/10.2307/1993701
- D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. https://doi.org/10.1080/00927878908823879
- S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), no. 2-3, 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
- M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prufer integral closure, Comm. Algebra 26 (1998), no. 4, 1017-1039. https://doi.org/10.1080/00927879808826181
- R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
- R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- M. Griffin, Some results on v-multiplication rings, Canadian J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8
- M. Griffin, Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1-27. https://doi.org/10.1515/crll.1968.229.1
- J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44. https://doi.org/10.1016/0022-4049(80)90114-0
- W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164-170. https://doi.org/10.1112/S0025579300002527
- E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), no. 2, 291-300. https://doi.org/10.1307/mmj/1029003756
- E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
- B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv, J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
- B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
- S. Malik, Properties of commutative group rings and semigroup rings, in Algebra and its applications (New Delhi, 1981), 133-146, Lecture Notes in Pure and Appl. Math., 91, Dekker, New York, 1984.
- J. L. Mott and M. Zafrullah, On Prufer v-multiplication domains, Manuscripta Math. 35 (1981), no. 1-2, 1-26. https://doi.org/10.1007/BF01168446