References
- H. Alzer, Sharp bounds for the ratio of q-gamma functions, Math. Nachr. 222 (2001), 5-14. https://doi.org/10.1002/1522-2616(200102)222:1<5::aid-mana5>3.0.co;2-q
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math. 160 (1993), no. 1, 1-18. http://projecteuclid.org/euclid.pjm/1102624560 https://doi.org/10.2140/pjm.1993.160.1
- N. Batir, q-extensions of some estimates associated with the digamma function, J. Approx. Theory 174 (2013), 54-64. https://doi.org/10.1016/j.jat.2013.06.002
- N. Batir, Monotonicity properties of q-digamma and q-trigamma functions, J. Approx. Theory 192 (2015), 336-346. https://doi.org/10.1016/j.jat.2014.12.013
- J. El Kamel and K. Mehrez, A function class of strictly positive definite and logarithmically completely monotonic functions related to the modified Bessel functions, Positivity 22 (2018), no. 5, 1403-1417. https://doi.org/10.1007/s11117-018-0584-3
- B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 2, 21-30.
- M. E. H. Ismail, L. Lorch, and M. E. Muldoon, Completely monotonic functions associated with the gamma function and its q-analogues, J. Math. Anal. Appl. 116 (1986), no. 1, 1-9. https://doi.org/10.1016/0022-247X(86)90042-9
- C. H. Kimberling, A probabilistic interpretation of complete monotonicity, Aequationes Math. 10 (1974), 152-164. https://doi.org/10.1007/BF01832852
- T. H. Koornwinder, q-Special functions, a tutorial, arXiv:math/9403216v2
- K. Mehrez, A class of logarithmically completely monotonic functions related to the q-gamma function and applications, Positivity 21 (2017), no. 1, 495-507. https://doi.org/10.1007/s11117-016-0431-3
- K. Mehrez, Some geometric properties of a class of functions related to the Fox-Wright functions, Banach J. Math. Anal. (2020), https://doi.org/10.1007/s43037-020-00059-w
- A. Salem, A q-analogue of the exponential integral, Afr. Mat. 24 (2013), no. 2, 117-125. https://doi.org/10.1007/s13370-011-0046-6
- A. Salem, A certain class of approximations for the q-digamma function, Rocky Mountain J. Math. 46 (2016), no. 5, 1665-1677. https://doi.org/10.1216/RMJ-2016-46-5-1665
- A. Salem, Generalized the q-digamma and the q-polygamma functions via neutrices, Filomat 31 (2017), no. 5, 1475-1481. https://doi.org/10.2298/FIL1705475S
- C. Wei and Q. Gu, q-generalizations of a family of harmonic number identities, Adv. in Appl. Math. 45 (2010), no. 1, 24-27. https://doi.org/10.1016/j.aam.2009.11.007