DOI QR코드

DOI QR Code

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea

포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링

  • Kim, Seon-ok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth & Environmental Sciences, Pukyong National University)
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2021.01.09
  • Accepted : 2021.01.12
  • Published : 2021.02.28

Abstract

This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.

이 연구에서는 포항분지 영일층군 덮개암 시료의 광물학적 특성을 파악하고, 이산화탄소 주입으로 인해 발생할 수 있는 물-암석-가스의 상호작용을 지화학 모델링을 이용하여 규명하였다. 이를 위하여 XRD, MICP, BET 분석을 실시하여 덮개암의 광물암석학적 및 공극 특성을 파악하였고, 광물학적 연구 결과와 공극수의 물리화학적 변수 자료들을 이용하여 이산화탄소 주입 후 단기간 변화와 장기간 영향을 파악하기 위하여 두 단계의 지화학 모델링(The Geochemist's Workbench 14.0.1)을 수행하였다. 연구 결과, 포항분지 영일층군의 덮개암은 석영, 알바이트, K-장석으로 주로 구성되어 있고, 소량의 백운모, 황철석, 방해석, 카올리나이트, 몬모릴로나이트로 이루어져 있다. 지화학 모델링 결과, 이산화탄소의 주입 후 덮개암은 방해석의 용해로 인해 공극률이 증가하고 알바이트와 K-장석의 용해 결과 도소나이트와 은미정질 실리카(칼세도니)가 침전되었다. 주입이 완료된 두 번째 단계에서는 방해석과 알바이트의 용해 결과 도소나이트와 은미정질 실리카(칼세도니)의 침전이 일어나며, 이 반응으로 인해 pH는 증가하였다. 또한 덮개암에서 이산화탄소를 포획할 수 있는 광물은 도소나이트 임을 알 수 있었다. 이러한 연구 결과는 장기간의 이산화탄소 지중 저장에 있어 광물 포획의 효율성을 정량적으로 평가하는 자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Duan, Z.H. and Sun, R. (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol., v.193, p.257-271. https://doi.org/10.1016/S0009-2541(02)00263-2
  2. Duan, Z.H., Sun, R., Zhu, C. and Chou, I.M. (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42. Mar. Chem., v.98, p.131-139. https://doi.org/10.1016/j.marchem.2005.09.001
  3. Golding, S.D., Dawson, G.K.W., Boreham, C.J. and Mernagh, T. (2013) ANLEC Project 7-1011-0189: Authigenic carbonates as natural analogues of mineralisation trapping in CO2 sequestration: a desktop study Manuka, ACT, Australia: Australian National Low Emissions Coal Research and Development.
  4. Hitchen, B. (1996) Aquifer Disposal of Carbon Dioxide, Hydrologic and Mineral Trapping. Geoscience Publishing Sherwood Park, Alberta, Canada.
  5. IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide captureand storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, 4.
  6. Kim, S.O., Wang, S.K. and Lee, M.H. (2016) Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin. Econ. Environ. Geol., v.49, n.5, p.371-380. https://doi.org/10.9719/EEG.2016.49.5.371
  7. Kim, S.O., Wang, S.K. and Lee, M.H. (2020) Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis. Econ. Environ. Geol., v.53, n.1, p.23-32. https://doi.org/10.9719/EEG.2020.53.1.23
  8. Kjoller, C., Weibel, R., Bateman, K., Laiser, T., Nielsen, L.H., Frykman, P. and Springer, N. (2011) Geochemical impacts of CO2 storage in saline aquifers with various mineralogy-results from laboratory experiments and reactive geochemical modeling. Energy Procedia, v.4, p.4724-4731. https://doi.org/10.1016/j.egypro.2011.02.435
  9. Lee, S.H, Kim, S.O., Choi, B.Y., Do, H.K., Yun, S.T. and Jun, S.H. (2017) Hydrogeochemical modeling on water-rock-CO2 interactions within a CO2 -injected shallow aquifer. Journal of the Geological Society of Korea, v. 53, no.5, p.657-673. https://doi.org/10.14770/jgsk.2017.53.5.657
  10. Lasaga, A. C. (1984) Chemical kinetics of water-rock interactions. J. Geophys. Res., v.89, p.4009-4025. https://doi.org/10.1029/JB089iB06p04009
  11. Lassen, R.N., Plampin, M., Sakaki, T., Illangasekare, T., Gudbjerg, J., Sonnenborg, T. and Jensen, K.H. (2015) Effects of geologic heterogeneity on migration of gaseous CO2 using laboratory and modeling investigations. International Journal of Greenhouse Gas Control, v.43, p.213-224. https://doi.org/10.1016/j.ijggc.2015.10.015
  12. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T. (2010) Geological storage of CO2 in saline aquifers - A review of the experience from existing storage operations. Int. J. Greenh. Gas Control, v.4, p.659-667. https://doi.org/10.1016/j.ijggc.2009.12.011
  13. Palandri, J.L. and Kharaka, Y.K. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. US Geological Survey, Open File Report 2004-1068.
  14. Park, E.D., Wang, S.K., Kim, S.O. and Lee, M.H. (2014) The effects of the carbon dioxide stored in geological formations on the mineralogical and geochemical alterations of phyllosilicate minerals. Jourmal of the Geological Society of Korea, v.50, n.2, p.231-240.
  15. Park, J.Y., Lee, M.H. and Wang, S.K. (2013) Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition. Econ. Environ. Geol., v.46, n.3, p.221-234. https://doi.org/10.9719/EEG.2013.46.3.221
  16. Parkhurst, D.L. and Appelo, C. (1999) User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigation Report, p.99-4259.
  17. Qafoku, N.P., Lawter, A.R., Shao, H., Wang, G. and Brown, C.F. (2014) Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: experimental Results. Energy Procedia, v.63, p.3275-3284. https://doi.org/10.1016/j.egypro.2014.11.355
  18. Rosenbauer, R.J., Koksalan, T. and Palandri, J.L. (2005) Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: implications for CO2 sequestration in deep-saline aquifers. Fuel Process Technol., v.86, p.1581-1597. https://doi.org/10.1016/j.fuproc.2005.01.011
  19. Sohn, M., Song, C.W., Sohn, Y.K. and Kwon, Y.K. (2011) Geological structure and Depositional systems of Miocene Pohang basin for promising CO2 storage, Annual Conference of the Geological Society of Korea (Abstracts), October 26-28, p.108.
  20. Xu, T., Apps, J.A. and Pruess, K. (2003) Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J. Geophys. Res., v.108), p.2071-2084.
  21. Xu, T., John, A.A. and Pruess, K. (2004), Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, v.19, p.917-936. https://doi.org/10.1016/j.apgeochem.2003.11.003
  22. Yang, Q., Matter, J., Takahashi, T., Stute, M., O'Mullan, G., Clauson, K., Umemoto, K. and Goldberg, D. (2015) Groundwater geochemistry in bench experiments simulating CO2 leakage from geological storage in the Newark Basin. International Journal of Greenhouse Gas Control, v.42, p.98-108. https://doi.org/10.1016/j.ijggc.2015.06.024