DOI QR코드

DOI QR Code

Thrips Infesting Hot Pepper Cultured in Greenhouses and Variation in Gene Sequences Encoded in TSWV

시설재배지 고추를 가해하는 총채벌레류와 TSWV 유전자 서열 변이

  • Kim, Chulyoung (Department of Plant Medicals, Andong National University) ;
  • Choi, Duyeol (Department of Plant Medicals, Andong National University) ;
  • Kang, Jeong Hun (Department of Plant Medicals, Andong National University) ;
  • Ahmed, Shabbir (Department of Plant Medicals, Andong National University) ;
  • Kil, Eui-Joon (Department of Plant Medicals, Andong National University) ;
  • Kwon, Gimyeon (Biological Utilization Institute, Inc.) ;
  • Lee, Gwan-Seok (Crop Protection Division, National Institute of Agriculture and Sciences) ;
  • Kim, Yonggyun (Department of Plant Medicals, Andong National University)
  • Received : 2021.08.23
  • Accepted : 2021.11.09
  • Published : 2021.12.01

Abstract

Thrips infesting hot peppers were monitored in greenhouses using yellow sticky traps. In addition, the hot peppers infected with tomato spotted wilt virus (TSWV) were observed during the monitoring period. The flower thrips (Frankliniella intonsa) were initially trapped at a low density just after transplanting seedlings of hot peppers at late March. The western flower thrips (Frankliniella occidentalis) were trapped after mid April. These two thrips represented more than 98% of the total thrips attracted to the traps after May, in which F. intonsa showed higher occurrence frequency than F. occidentalis. The total number of thrips had two peaks at mid May with a small and short-term peak and at June-July with a large and long-term peak. The trapped thrips exhibited inconsistent sex ratios, suggesting a seasonal parthenogenesis. Different geographical populations were varied in cytochrome oxidase I sequences, in which local populations in Andong shared a high sequence similarity. TSWV-infected hot peppers, which might be mediated by these two thrips species, were observed and confirmed by an immunoassay kit and a molecular diagnosis using RT-PCR. In addition, the TSWV was detected in F. occidentalis collected from the infected hot peppers. Three open reading frames (NSS, N, and NSM) of the isolated TSWV genomes were sequenced and showed multiple point mutations containing missense mutations among geographical variants. When the isolated TSWV was fed to nonvirulent thrips of F. occidentalis, the virus was detected in both larvae and adults. However, the viral replication occurred in larvae, but not in adults.

시설재배지를 대상으로 고추 정식 이후 황색 끈끈이트랩으로 총채벌레 발생을 모니터링하였다. 아울러 토마토반점위조바이러스(Tomato spotted wilt virus: TSWV)가 유발하는 고추 칼라병을 유관으로 조사하였다. 고추 정식 직후(3월 말) 낮은 밀도로 대만총채벌레(Frankliniella intonsa)가 트랩에 포획되었으며 4월 중순부터는 꽃노랑총채벌레(Frankliniella occidentalis)도 발견되었다. 이후 5월부터는 두 종이 전체 총채벌레의 98% 이상을 차지하였고, 이 가운데 대만총채벌레가 꽃노랑총채벌레보다 다소 많은 발생 밀도를 보였다. 전체 총채벌레의 발생 피크를 보면 5월 중순에 낮은 피크를 기점으로 6-7월에 발생 최성기를 보였다. 이후 총채벌레의 발생은 급격하게 감소하였다. 포획된 꽃노랑총채벌레의 암수 비율이 일정하지 않았는데 이는 이 곤충의 특이적 단성생식 가능성으로 이에 대한 실험적 증거를 제공하였다. 지역간 꽃노랑총채벌레의 유전적 거리를 COI 서열로 비교한 결과 원거리에서 채집한 꽃노랑총채벌레 집단과는 차이를 보였지만 안동지역 내에서 발생한 꽃노랑총채벌레는 COI 서열에서 높은 유사성을 보였다. 이들 주요 두 종의 총채벌레가 전파할 것으로 추정되는 고추 칼라병이 일부 시설재배지를 중심으로 발견되었으며 항혈청 및 분자진단을 통해 확인되었다. 더불어 감염 고추에서 채집된 꽃노랑총채벌레에서도 분자진단을 통해 TSWV를 검출하였다. 감염 TSWV의 게놈 구조를 비교하기 위해 기능성 단백질을 갖는 NSS, N, NSM의 유전자 서열을 분석하였다. 서로 다른 지역별 이들 유전자는 다수의 점돌연변이가 존재하였고 이들 가운데는 아미노산 서열 차이를 초래하는 오류 돌연변이를 포함하였다. 추출된 TSWV를 비보독충 꽃노랑총채벌레에 섭식 처리한 유충과 성충 모두에서 감염으로 일어났으나, 유충에게서만 바이러스 증식이 일어나는 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01578901)의 지원에 의해 이루어진 것임.

References

  1. Almasi, A., Csillery, G., Csomor, Z., Nemes, K., Palkovics, L., Salanki, K., Tobias, I., 2015. Phylogenetic analysis of tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper. Virus Genes 50, 71-78. https://doi.org/10.1007/s11262-014-1131-3
  2. Culbreath, A.K., Todd, J.W., Brown, S.L., 2003. Epidemiology and management of tomato spotted wilt in peanut. Annu. Rev. Phytopathol. 41, 53-75. https://doi.org/10.1146/annurev.phyto.41.052002.095522
  3. German, T.L., Ullman, D.E., Moyer, J.W., 1992. Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu. Rev. Phytopathol. 30, 315-348. https://doi.org/10.1146/annurev.py.30.090192.001531
  4. Groves, R.L., Walgenbach, J.F., Moyer, J.W., Kennedy, G.G., 2001. Overwintering of Frankliniella fusca (Thysanoptera: Thripidae) on winter annual weeds infected with Tomato spotted wilt virus and patterns of virus movement between susceptible weed hosts. Phytopathology 91, 891-899. https://doi.org/10.1094/PHYTO.2001.91.9.891
  5. Han, M.J., Kim, I.S., Ahn, S.B., Lee, M.L., Hong, K.J., Lee, G.H., Ku, D.S., 1998. Distribution and host plants of recently introduced western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Korea. RDA J. Crop Prot. 40, 83-88.
  6. Hunter, W.B., Ullman, D.E., 1989. Analysis of mouthpart movements during feeding of Frankliniella occidentalis (Pergande) and F. schultzei trybom (Thysanoptera: Thripidae). Intl. J. Insect Morph. Embryol. 18, 161-171. https://doi.org/10.1016/0020-7322(89)90024-X
  7. Jahn, M., Paran, I., Hoffmann, K., Radwanski, E.R., Livingstone, K.D., Grube, R.C., Aftergoot, E., Lapidot, M., Moyer, J.W., 2000. Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol. Plant-Microbe Interact. 13, 673-682. https://doi.org/10.1094/MPMI.2000.13.6.673
  8. Katayama, H. 1997. Effect of temperature on development and oviposition of western flower thrips Frankliniella occidentalis (Pergande). Jpn. J. Appl. Entomol. Zool. 41, 225-231. https://doi.org/10.1303/jjaez.41.225
  9. Katayama, H., Ikeda, F. 1995. Overwintering of western flower thrips Frankliniella occidentalis Pergande in the western region of Shizuoka Prefecture. B. Shizuoka Agric. Exp. Stn. 40, 63-73.
  10. Kim, C., 2000. Review of disease incidence of major crops in 2000. Korean J. Pestic. Sci. 5, 1-11.
  11. Kim, J.H., Choi, G.S., Kim, J.S., Choi, J.K., 2004. Characterization of tomato spotted wilt virus from Paprika in Korea. Plant Pathol. J. 20, 297-301 https://doi.org/10.5423/PPJ.2004.20.4.297
  12. Kim, T.Y., Jang, C., Kang, H.W., Choi, J.H., Lee, H.W., Lee, J.W., Lee, D.H., Yang, S.K., Lee, S.Y., Min, C.G., Lee, D.W., 2021. Comparison of pest occurrence and viral disease incidence rate with reduced the application of pesticides in red pepper field. Korean J. Pestic. Sci. 25, 1-10. https://doi.org/10.7585/kjps.2021.25.1.1
  13. Kindt, F., Joosten, N.N., Peters, D., Tjallingii, W.F., 2003. Characterisation of the feeding behaviour of western flower thrips in terms of electrical penetration graph (EPG) waveforms. J. Insect Physiol. 49, 183-191. https://doi.org/10.1016/S0022-1910(02)00255-X
  14. Ko, S.J., Kang, B.R., Choi, D.S., Kim, D.I., Lee, G.S., Kim, C.S., Choi, H.S., 2013. Pattern of the occurrence of tomato spotted wilt virus in Jeonnam province. Res. Plant Dis. 19, 273-280. https://doi.org/10.5423/RPD.2013.19.4.273
  15. Korea Crop Protection Association (KCPA), 2020. Agrochemicals user's guide book, Korea Crop Protection Association, https://www.koreacpa.org/ko/use-book. (Accessed at Aug. 18. 2021).
  16. Korean Statistical Information Service (KOSIS), 2020. Area of cultivation of outdoor vegetables. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0013&vw_cd=MT_ZTITLE&list_id=K1_15&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE. (Accessed Aug. 18. 2021).
  17. Lee, G.S., Lee, J.H., Kang, S.H., Woo, K.S., 2001. Thrips species (Thysanoptera: Thripidae) in winter season and their vernal activities on Jeju island, Korea. J. Asia Pac. Entomol. 4, 115-122. https://doi.org/10.1016/S1226-8615(08)60112-0
  18. Lee, S., Lee, J., Kim, S., Choi, H., Park, J., Lee, J., Lee, K., Moon, J., 2004. The incidence and distribution of viral diseases in pepper by cultivation types. Res. Plant Dis. 10, 231-240. https://doi.org/10.5423/RPD.2004.10.4.231
  19. Lim, U.T., Kim, E., Mainali, B.P., 2013. Flower model traps reduced thrips infestations on a pepper crop in field. J. Asia Pac. Entomol. 16, 143-145. https://doi.org/10.1016/j.aspen.2012.12.007
  20. Moon, H.C., Cho, I.K., Im, J.R., Goh, B.R., Kim, D.H., Hwang, C.Y., 2006. Seasonal occurrence and damage by thrips on open red pepper in Jeonbuk Province. Korean J. Appl. Entomol. 45, 9-13.
  21. Okazaki, S., Okuda, M., Komi, K., Yoshimatsu, H., Iwanami, T., 2007. Overwintering viruliferous Frankliniella occidentalis (Thysanoptera: Thripidae) as an infection source of tomato spotted wilt virus in green pepper fields. Plant Dis. 91, 842-846. https://doi.org/10.1094/pdis-91-7-0842
  22. Park, H.H., Kim, K.H., Park, C.G., Choi, B.R., Kim, J.J., Lee, S.W., Lee, S.G., 2009. Damage analysis and control threshold of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on greenhouse eggplant and sweet pepper. Korean J. Appl. Entomol. 48, 229-236. https://doi.org/10.5656/KSAE.2009.48.2.229
  23. Park, J.D., Kim, D.I., Kim, S.G., 2002. Seasonal occurrence and damaged aspects of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) by cultural environments and varieties of chrysanthemum. Korean J. Appl. Entomol. 41, 177-181.
  24. Park, Y., Kim, K., Kim, Y., 2014. Rapid cold hardening of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 43, 1076-1083. https://doi.org/10.1603/EN13291
  25. Reitz, S.R., Gao, Y., Kirk, W.D.J., Hoddle, M.S., Leiss, K.A., Funderburk, J.E., 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65, 17-37. https://doi.org/10.1146/annurev-ento-011019-024947
  26. Roggero, P., Masenga, V., Tavella, L. 2002. Field isolates of tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Dis. 86, 950-954. https://doi.org/10.1094/pdis.2002.86.9.950
  27. Rotenberg, D., Jacobson, A.L., Schneweis, D.J., Whitfield, A.E., 2015. Thrips transmission of tospoviruses. Curr. Opin. Virol. 15, 80-89. https://doi.org/10.1016/j.coviro.2015.08.003
  28. Rugman-Jones, P.F., Hoddle, M.S., Stouthamer, R. 2010. Nuclearmitochondrial barcoding exposes the global pest western flower thrips (Thyasnoptera: Thripidae) as two sympatric cryptic species in its native California. Mol. Entomol. 103, 877-886.
  29. Rural Development Administration (RDA), 2020. Agricultural technology guide, Pepper. Jinhan M&B Inc. Seoul. Korea.
  30. SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
  31. Seo, J., Yi, Y., Kim, B., Hwang, J.M., Choi, S.W., 2011. Disease occurrence on red-pepper plants surveyed in Northern Kyungbuk province, 2007-2008. Res. Plant Dis. 17, 205-210. https://doi.org/10.5423/RPD.2011.17.2.205
  32. Seo, M.H., Lee, S.C., Yang, C.Y., Yoon, J.B., Park, J., 2018. Monitoring occurrence status of thrips populations on field-cultivated pepper at major cultivated region in west coast, Korea. Korean J. Environ. Biol. 36, 544-549. https://doi.org/10.11626/KJEB.2018.36.4.544
  33. Shalileh, S., Ogada, P.A., Moualeu, D.P., Poehling, H.M., 2016. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by tomato spotted wilt virus (Tospovirus) via the host plant nutrients to enhance its transmission and spread. Environ. Entomol. 45, 1235-1242. https://doi.org/10.1093/ee/nvw102
  34. ShuQi, H., Ying, L., Lei, Q., ZhiHua, L., Chao, X., Lu, Y., FuRong, G., 2017. The influence of elevated CO2 concentration on the fitness traits of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae). Environ Entomol. 46, 722-728. https://doi.org/10.1093/ee/nvx083
  35. Skendzic, S., Zovko, M., Zivkovic, I.P., Lesic, V., Lemic, D., 2021. The impact of climate change on agricultural insect pests. Insects 12, 440. https://doi.org/10.3390/insects12050440
  36. Stafford, C.A., Walker, G.P., Ullman, D.E., 2011. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. USA 108, 9350-9355. https://doi.org/10.1073/pnas.1100773108
  37. Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J.M., Moury, B., 2011. Evolution and structure of tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. J. Gen. Virol. 92, 961-973. https://doi.org/10.1099/vir.0.029082-0
  38. Ullah, M.S., Lim, U.T., 2015. Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J. Econ. Entomol. 108, 1000-1009. https://doi.org/10.1093/jee/tov035
  39. Webster, C.G., Reitz, S.R., Perry, K.L., Adkins, S., 2011. A natural M RNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413, 216-225. https://doi.org/10.1016/j.virol.2011.02.011
  40. Woo, K.S., Paik, W.H., 1971. Studies on the thrips (Thysanoptera) unrecorded in Korea (I). Korean J. Plant Prot. 10, 69-73.
  41. Yoon, J.Y., Her, N.H., Cho, I.S., Chung, B.N., Choi, S.K., 2021. First report of a resistance-breaking strain of tomato spotted wilt orthotospovirus infecting Capsicum annuum carrying the Tsw resistance gene in South Korea. Plant Dis. doi: 10.1094/PDIS-09-20-1952-PDN.
  42. Yoon, J.Y., Yoon, J.B., Seo, M.H., Choi, S.K., Cho, I.S., Chung, B.N., Yang C.Y., Gangireddygari, V.S.R., 2020. Application of multiplex RT-PCR for simultaneous identification of tomato spotted wilt virus and thrips species in an individual thrips on chrysanthemum. Res. Plant Dis. 26, 264-271. https://doi.org/10.5423/RPD.2020.26.4.264
  43. Zhang, Z.J., Wu, Q.J., Li, X.F., Zhang, Y.J., Xu, B.Y., Zhu, G.R., 2007. Life history of western flower thrips, Frankliniella occidentalis (Thysan., Thripae), on five different vegetable leaves. J. Appl. Entomol. 131, 347-354. https://doi.org/10.1111/j.1439-0418.2007.01186.x