DOI QR코드

DOI QR Code

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Kim, Jinhong (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Song, Heewon (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Lee, Seon Hwa (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Sung, Jong Hun (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Kim, Jisu (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Yoo, Hyun Deog (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University)
  • Received : 2020.04.01
  • Accepted : 2020.05.11
  • Published : 2020.11.30

Abstract

Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Keywords

References

  1. D. Larcher and J.-M. Tarascon, Nat. Chem., 2015, 7(1), 19. https://doi.org/10.1038/nchem.2085
  2. T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu and H.K. Song, Adv. Energy Mater., 2012, 2(7), 860-872. https://doi.org/10.1002/aenm.201200028
  3. N. Nitta, F. Wu, J.T. Lee and G. Yushin, Mater. Today, 2015, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  4. B. Xu, D. Qian, Z. Wang and Y.S. Meng, Mater. Sci. Eng., R, 2012, 73(5-6), 51-65. https://doi.org/10.1016/j.mser.2012.05.003
  5. K. Mizushima, P. Jones, P. Wiseman and J.B. Goodenough, Mater. Res. Bull., 1980, 15, 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  6. S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S.X. Dou, Z. Guo and J. Cho, Adv. Energy Mater., 2017, 7(1), 1601507. https://doi.org/10.1002/aenm.201601507
  7. J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang and Y. Lu, Nat. Commun., 2018, 9, 4918. https://doi.org/10.1038/s41467-018-07296-6
  8. F. Schipper, E.M. Erickson, C. Erk, J.-Y. Shin, F.F. Chesneau and D. Aurbach, J. Electrochem. Soc., 2017, 164(1), A6220-A6228. https://doi.org/10.1149/2.0351701jes
  9. J. Dunn, L. Gaines, J. Kelly, C. James and K. Gallagher, Energy Environ. Sci., 2015, 8(1), 158-168. https://doi.org/10.1039/C4EE03029J
  10. T. Kim, W. Song, D.-Y. Son, L.K. Ono and Y. Qi, J. Mater. Chem. A, 2019, 7(7), 2942-2964. https://doi.org/10.1039/c8ta10513h
  11. Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y.A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu and Y. Li, Nat. Energy, 2018, 3(11), 936-943. https://doi.org/10.1038/s41560-018-0180-6
  12. X. Lu, Y. Sun, Z. Jian, X. He, L. Gu, Y.-S. Hu, H. Li, Z. Wang, W. Chen, X. Duan, L. Chen, J. Maier, S. Tsukimoto and Y. Ikuhara, Nano Lett., 2012, 12(12), 6192-6197. https://doi.org/10.1021/nl303036e
  13. X.-Y. Qiu, Q.-C. Zhuang, Q.-Q. Zhang, R. Cao, P.-Z. Ying, Y.-H. Qiang and S.-G. Sun, Phys. Chem. Chem. Phys., 2012, 14(8), 2617-2630. https://doi.org/10.1039/c2cp23626e
  14. M.D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M.S. Whittingham, Y.S. Meng and A. Van der Ven, Adv. Energy Mater., 2017, 7(20), 1602888. https://doi.org/10.1002/aenm.201602888
  15. A. Van der Ven, M. Aydinol, G. Ceder, G. Kresse and J. Hafner, Phys. Rev. B, 1998, 58(6), 2975. https://doi.org/10.1103/PhysRevB.58.2975
  16. H. Xia, L. Lu, Y. Meng and G. Ceder, J. Electrochem. Soc., 2007, 154(4), A337-A342. https://doi.org/10.1149/1.2509021
  17. A. Yano, M. Shikano, A. Ueda, H. Sakaebe and Z. Ogumi, J. Electrochem. Soc., 2017, 164(1), A6116-A6122.
  18. M. Mladenov, R. Stoyanova, E. Zhecheva and S. Vassilev, Electrochem. Commun., 2001, 3(8), 410-416. https://doi.org/10.1016/S1388-2481(01)00192-8
  19. L. Wang, B. Chen, J. Ma, G. Cui and L. Chen, Chem. Soc. Rev., 2018, 47(17), 6505-6602. https://doi.org/10.1039/c8cs00322j
  20. C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann and C. Delmas, J. Electrochem. Soc., 2000, 147, 2061-2069. https://doi.org/10.1149/1.1393486
  21. H. Li, P. Zhou, F. Liu, H. Li, F. Cheng and J. Chen, Chem. Sci., 2019, 10(5), 1374-1379. https://doi.org/10.1039/C8SC03385D
  22. H. Tukamoto and A. West, J. Electrochem. Soc., 1997, 144(9), 3164-3168. https://doi.org/10.1149/1.1837976
  23. M. Jo, Y.-S. Hong, J. Choo and J. Cho, J. Electrochem. Soc., 2009, 156(6), A430-A434. https://doi.org/10.1149/1.3111031
  24. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou and I. Honma, J. Am. Chem. Soc., 2007, 129(23), 7444-7452. https://doi.org/10.1021/ja0681927
  25. C. Mi, X. Zhao, G. Cao and J. Tu, J. Electrochem. Soc., 2005, 152(3), A483-A487. https://doi.org/10.1149/1.1852438
  26. R. Malik, D. Burch, M. Bazant and G. Ceder, Nano Lett., 2010, 10(10), 4123-4127. https://doi.org/10.1021/nl1023595
  27. H. Zheng, J. Li, X. Song, G. Liu and V.S. Battaglia, Electrochim. Acta, 2012, 71, 258-265. https://doi.org/10.1016/j.electacta.2012.03.161
  28. A. Gusev and A. Kurlov, Nanotechnology, 2008, 19(26), 265302. https://doi.org/10.1088/0957-4484/19/26/265302
  29. M. Salari, M. Rezaee and P. Marashi, J. Nano Res-SW, 2009, 6, 15-21. https://doi.org/10.4028/www.scientific.net/JNanoR.6.15
  30. M. Stein, IV, C.-F. Chen, M. Mullings, D. Jaime, A. Zaleski, P.P. Mukherjee and C.P. Rhodes, J. Electrochem. Energy, 2016, 13(3).
  31. T. Pan, J. Alvarado, J. Zhu, Y. Yue, H.L. Xin, D. Nordlund, F. Lin and M.M. Doeff, J. Electrochem. Soc., 2019, 166(10), A1964-A1971. https://doi.org/10.1149/2.0091910jes
  32. K.-M. Nam, H.-J. Kim, D.-H. Kang, Y.-S. Kim and S.-W. Song, Green Chem., 2015, 17(2), 1127-1135. https://doi.org/10.1039/C4GC01898B
  33. P. Barai, Z. Feng, H. Kondo and V. Srinivasan, J. Phys. Chem. B, 2019, 123(15), 3291-3303. https://doi.org/10.1021/acs.jpcb.8b12004
  34. G. Ting-Kuo Fey, V. Subramanian and J.-G. Chen, Electrochem. Commun., 2001, 3(5), 234-238. https://doi.org/10.1016/S1388-2481(01)00145-X