DOI QR코드

DOI QR Code

Simulation of the Debris Flow Using FLO-2D According to Curve-shape Changes in Bed Slopes

FLO-2D를 활용한 경사지 형상에 따른 토석류 흐름양상에 대한 수치모의

  • Received : 2020.07.26
  • Accepted : 2020.09.05
  • Published : 2020.09.30

Abstract

Due to a high portion of mountainous terrains in Korea, debris flow and its disasters have been increased. In addition, recently localized flash-floods caused by climate change should add frequencies and potential risks. Grasping and understanding the behaviors of debris flow would allow us to prevent the consequent disasters caused by its occurrence. In this study, we developed a number of cases by changing the bottom slopes and their curvatures and investigated their effects on potential damage caused by the debris flow using FLO-2D. As simulating each bed slopes we analyzed for velocity, depth, impact, reach distance, and reach shape. As a result the lower the average slope, the greater the influence of its curvature and the numerical results were analyzed with showed a well-marked difference in impact stress and flow velocity. The result from this study could be referred for protecting from the debris flows when design countermeasure structures in mountainous regions.

국내 지형특성은 산지의 비율이 높아 토석류로 인한 피해 위험이 높다. 또한 기후변동성으로 인한 게릴라 국지성 호우는 토석류 재해의 발생빈도와 잠재적 위협을 증가시킨다. 토석류는 발생에 대한 예측이 어려워 거동특성을 분석하여 사전에 피해를 예방하는 것이 효과적이다. 본 연구는 공차와 평균경사가 각각 다른 경사지 형상을 FLO-2D를 사용하여 전파면과 경사면에 대해 발생하는 피해규모를 연구하였다. 수치모의를 통해 계산된 유속, 수심, 충격응력, 도달거리, 전파형상을 분석하였다. 수치모의 결과, 평균경사가 낮을수록 경사형상이 토석류 거동에 미치는 영향이 크며, 층격응력, 유속에서 분명한 차이를 나타낸다. 본 연구결과는 산지 주변 구조물 설계 및 시공 시 토석류 발생 피해 및 대비에 대해 참고할 자료가 될 것을 기대한다.

Keywords

References

  1. Cruise, J. F. Singh, V. P., and Sherif, M. M. (2014). Elementary Hydraulics 1st. Cengage Learning US.
  2. Iverson, R. M. (2003). The Debris-flow Rheology Myth. Debris-flow Hazards Mitigation, Mechanics, Prediction, and Assessment. 1: 303-314.
  3. Iverson, R. M. and Denlinger, R. P. (2001). Flow of Variably Fluidized Granular Masses Across Three-Dimensional Terrain: 1. Coulomb Mixture Theory. Journal of Geophysical Research: Solid Earth. 106(B1): 537-552. https://doi.org/10.1029/2000JB900329
  4. Jakob, M., Hungr, O., and Jakob, D. M. (2005). Debris-flow Hazards and Related Phenomena (Vol. 739). Berlin: Springer.
  5. Jang, C. B., Choi, Y. N., and Yoo, N. J. (2017). A Study on Behavior Characteristics and Triggering Rainfall of Debris Flow. Journal of the Korean Geo-Environmental Society. 18(1): 13-21. https://doi.org/10.14481/jkges.2017.18.1.13
  6. Jeong, S. W. (2010). Flow Characteristics of Landslides/debris Flows: Sediment Rheology and Mobility and Mobility of Landslides. Proceedings of Korean Society of Engineering Geology (KSEG) Conference 2010. KSEG, 79-80.
  7. Kim, S., Paik, J., and Kim, K. S. (2013) Run-out modeling of debris flows in Mt. Umyeon using FLO-2D, Journal of the Korean Society of Civil Engineers, 33(3): 965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  8. Kim, S. D., Lee, H. J., and Chang, H. J. (2019). The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam. Journal of the Korea Academia-industrial Cooperation Society. 20(1): 409-418. https://doi.org/10.5762/KAIS.2019.20.1.409
  9. Kim, S.-K. and Seo, H.-S. (1997). An Analysis of Debris Flow Movement Using Rheological Model. Journal of Korean Geotechnical Society. 13(5): 133-143.
  10. Kim, Y. H., Jun, B. H., and Jun, K. W. (2019). Evaluation of Slope Stability of Taebaeksan National Park Using Detailed Soil Map. Journal of Korean Society of Disaster and Security. 12(2): 65-72. https://doi.org/10.21729/KSDS.2019.12.2.65
  11. Korea Express Corporation (2017). Risk Assessment and Prevention of Debris Flow on Expressway. Seongnam: Korea Express Corporation.
  12. Korea Forest Service (2007). How Many Mountains in Korea?, Korean Mountain Statistics Representation. Daejeon: Korea Forest Service.
  13. Korea Forest Service (2015). Risk Assessment of Vulnerable Areas in Debris Flow. Daejeon: Korea Forest Service.
  14. Lee, D. H., Lee, S. R., Jeon, J. S., Park, J. Y., and Kim, Y. T. (2019). Estimation of Debris-flow Volumes by an Artificial Neural Network Model. 7th International Conference on Debris-Flow Hazards Mtigation.
  15. Lee, J. S., Song, C. G., Kim, H. T., and Lee, S.O. (2015). Effect of Land Slope on Propagation due to Debris Flow Behavior. Korean Society of Safety. 30(3): 52-58.
  16. Lee, M. J. and Kim, Y. T. (2013). Movement and Deposition Characteristics of Debris Flow According to Rheological Factors. Journal of the Korean Geotechnical Society. 29(5): 19-27. https://doi.org/10.7843/kgs.2013.29.5.19
  17. Ministry of the Interior and Safety (2018). Evaluation Standard of Danger for Debris Flow. Sejong: Ministry of the Interior and Safety.
  18. O'Brien, J. S. and Garcia, R. (2009). FLO-2D Reference Manual. Nutrioso, Arizona. Version, 2011.
  19. O'Brien, J. S. and Julien, P. Y. (1985). Physical Properties and Mechanics of Hyperconcentrated Sediment Flows. Proc. ASCE HD Delineation of Landslides, Flash Flood and Debris Flow Hazards.
  20. O'Brien, J. S. and Julien, P. Y. (1988). Laboratory Analysis of Mudflow Properties. Journal of Hydraulic Engineering, ASCE. 114(8): 877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  21. O'Brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993). Two-dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, ASCE. 119(2): 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  22. Rickenmann, D., Laigle, McArdell, B. W., and Hubl, J. (2006). Comparison of 2D Debris-flow Simulation Models with Field Events. Computational Geosciences. 10(2): 241-264. https://doi.org/10.1007/s10596-005-9021-3
  23. Scheidl, C., McArdell, B., Nagl, G., and Rickenmann, D. (2019). Debris Flow Behavior in Super-and Subcritical Conditions. In Association of Environmental and Engineering Geologists; Special Publication 28. Colorado School of Mines. Arthur Lakes Library.
  24. Xi-lin, L. I. U. (2000). Regional Risk Assessment on Debris Flow. Journal of Natural Disasters. 9(1): 54-61. https://doi.org/10.3969/j.issn.1004-4574.2000.01.009