DOI QR코드

DOI QR Code

Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis

  • Received : 2019.12.19
  • Accepted : 2020.04.22
  • Published : 2020.11.25

Abstract

Currently, the pin-by-pin homogenized solvers are a very active research field as they can, unlike the nodal codes, directly predict the local power, while requiring significantly less computational resources than the heterogeneous transport codes. This paper presents a recently developed pin-by-pin diffusion/SP3 solver Tortin, its spatial discretization method and the reflector treatment. Regarding the spatial discretization, it was observed that the finite difference method applied on pin-cell size mesh does not properly capture the big flux change between MOX and uranium fuel, while the nodal expansion method is more accurate but too slow. If the finite difference method is used with a finer mesh in the outer two pin rows of the fuel assembly, it increases the required computation time by only 50%, but decreases the pin power errors below 1% with respect to lattice code reference solutions. The paper further describes the coupling of Tortin with a microscopic depletion solver. Several verification tests show that the SP3 pin-by-pin solver can reproduce the heterogeneous transport solvers results with very good accuracy, even for fuel cycle depletion of very heterogeneous core employing MOX fuel or inserted control rods, while being two orders of magnitude faster.

Keywords

References

  1. T. Bahadir, S.-O. Lindahl, S. Palmtag, SIMULATE-4 multigroup nodal code with microscopic depletion model, in: M&C 2005, Avignon, France, 2005, pp. 12-15. September.
  2. A. Dall'Osso, D. Tomatis, Y. Du, Improving cross sections via spectral rehomogenization, in: PHYSOR 2010, Pittsburgh, Pennsylvania, USA, 2010. May 9-14.
  3. A. Yamamoto, M. Tatsumi, Y. Kitamura, Y. Yamane, Improvement of the SPH method for pin-by-pin core calculations, J. Nucl. Sci. Technol. 41 (2010) 1155-1165. https://doi.org/10.1080/18811248.2004.9726344
  4. T. Kozlowski, Y. Xu, T.J. Downar, D. Lee, Cell homogenization method for pin-by-pin neutron transport calculations, Nucl. Sci. Eng. 169 (2011) 1-18. https://doi.org/10.13182/NSE08-85
  5. A. Seubert, Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD, in: PHYSOR 2010, Pittsburgh, Pennsylvania, USA, 2010. May 9-14.
  6. A. Calloo, S. Huy, D. Couyras, C. Brosselard, M. Fliscounakis, Validation of the SPn depletion schemes of the EDF GABV2-COCAGNE tools using the KAIST 1A benchmark, in: PHYSOR 2016, Sun Valley, Idaho, 2016. May 1-5.
  7. N. Garcia-Herranz, D. Cuervo, A. Sabater, G. Rucabado, S. Sanchez-Cervera, E. Castro, Multiscale neutronics/thermal-hydraulics coupling with COBAYA4 code for pin-by-pin PWR transient analysis, Nucl. Eng. Des. 321 (2017) 38-47. https://doi.org/10.1016/j.nucengdes.2017.03.017
  8. M. Daeubler, N. Trost, J. Jimenez, V. Sanchez, R. Stieglitz, R. Macian-Juan, Static and transient pin-by-pin simulations of a full PWR core with the extended coupled code system DYNSUB, Ann. Nucl. Energy 84 (2015) 31-44. https://doi.org/10.1016/j.anucene.2014.09.057
  9. D.W. Dean, SIMULATE-3 - Advanced Three-Dimensional Two-Group Reactor Analysis Code vol. 4, 2007. Studsvik Scandpower report SSP-95/15-Rev.
  10. C. Lee, Y. Kim, J. Song, C. Park, Incorporation of a new spectral history correction method into local power reconstruction for nodal methods, Nucl. Sci. Eng. 124 (1996) 160-166. https://doi.org/10.13182/NSE96-A24231
  11. F. Hoareau, E. Girardi, C. Brosselard, M. Fliscounakis, Verification of the COCAGNE core code using cluster depletion calculations, in: PHYSOR 2014, Kyoto, Japan, 2014. September 28 - October 3.
  12. The ARCADIA Reactor Analysis System for PWRs Methodology Description and Benchmarking Results, 2010. ANP-10297NP, Rev. 0.
  13. P. Mala, A. Pautz, H. Ferroukhi, EPR fuel cycle depletion with pin-by-pin code Tortin and nodal code SIMULATE5, in: M&C 2019, Portland, Oregon, USA, 2019. August 25-29.
  14. M. Zilly, J. Bousquet, K. Velkov, A. Pautz, PWR cycle analysis with the GRS core simulator KMACS, Jahrestagung Kerntechnik, Berlin, Germany, 2018, pp. 27-30. May.
  15. Intel Math Kernel Library, Developer reference, 2018.
  16. Fast Auxiliary Space Preconditioning, 2019 downloaded from, https://fasp.sourceforge.net.
  17. J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications, in: PHYSOR 2006, Vancouver, Canada, 2006. September 10-14.
  18. S. Choi, K. Smith, H. Lee, D. Lee, Impact of inflow transport approximation on light water reactor analysis, J. Comput. Phys. 299 (2015) 352-373. https://doi.org/10.1016/j.jcp.2015.07.005
  19. Z. Liu, K. Smith, B. Forget, A cumulative migration method for computing rigorous transport cross sections and diffusion coefficients for LWR lattices with Monte Carlo, in: PHYSOR 2016, Sun Valley, Idaho, 2016. May 1-5.
  20. J. Leppanen, M. Pusa, E. Friedman, Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 96 (2016) 126-136. https://doi.org/10.1016/j.anucene.2016.06.007
  21. B.R. Herman, B. Forget, K. Smith, B.N. Aviles, Improved diffusion coefficients generated from Monte Carlo codes, in: M&C 2013, Sun Valley, USA, 2013. May 5-9.
  22. A. Hebert, A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly, Nucl. Sci. Eng. 113 (1993) 227-238. https://doi.org/10.13182/NSE92-10
  23. S.-O. Lindahl, T. Bahadir, G. Grandi, SIMULATE5 - Methodology, 2011. Studsvik Scandpower Report SSP-10/465.
  24. T. Clerc, A. Hebert, H. Leroyer, J.-P. Argaud, A. Poncot, B. Bouriquet, Presentation of the MERC work-flow for the computation of a 2D radial reflector in a PWR, in: M&C 2013, Sun Valley, USA, 2013. May 5-9.
  25. M. Pusa, J. Leppanen, Computing the matrix exponential in burnup calculations, Nucl. Sci. Eng. 164 (2010) 140-150. https://doi.org/10.13182/NSE09-14
  26. M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nucl. Sci. Eng. 169 (2011) 155-167. https://doi.org/10.13182/NSE10-81
  27. T. Kozlowski, T.J. Downar, Pressurised Water Reactor MOX/UO2 Core Transient Benchmark, 2006. NEA/NSC/DOC(2006)20.