References
- H.C. LEE, T.Y. HAN, C.K. JO, J.M. NOH, Development of the HELIOS/CAPP code system for the analysis of pebble type VHTR cores, Ann. Nucl. Eng. 71 (2014) 120.
- J.M. NOH, N.Z. CHO, A new approach of analytic basis function expansion to neutron diffusion nodal calculation, Nucl. Sci. Eng. 116 (1994) 165. https://doi.org/10.13182/NSE94-A19811
- N.Z. CHO, J.M. NOH, Analytic function expansion nodal method for hexagonal geometry, Nucl. Sci. Eng. 121 (1995) 245. https://doi.org/10.13182/NSE95-A28561
- N.Z. CHO, Y.H. KIM, K.W. PARK, Extension of analytic function expansion nodal method to multigroup problems in hexagonal-Z geometry, Nucl. Sci. Eng. 126 (1997) 35. https://doi.org/10.13182/NSE97-A24455
- S.W. WOO, N.Z. CHO, J.M. NOH, The analytic function expansion nodal method refined with transverse gradient basis functions and interface flux moments, Nucl. Sci. Eng. 139 (2001) 156. https://doi.org/10.13182/NSE01-A2229
- N.Z. CHO, J.J. LEE, Analytic function expansion nodal (AFEN) method in hexagonal-z three dimensional geometry for neutron diffusion calculation, J. Nucl. Sci. Technol. 43 (2006) 1320. https://doi.org/10.1080/18811248.2006.9711226
- J.Y. Cho, H.G. Joo, B.O. Cho, S.Q. Zee, Hexagonal CMFD Formulation Employing Triangle-Based Polynomial Expansion Nodal Kernel, ANS M&C Topical Meeting, Salt Lake City, Utah, USA, 2001, 2001.
- K.S. Smith, Nodal method storage reduction by non-linear iteration, Trans. Am. Nucl. Soc. 44 (1983) 265.
- K.S. MOON, N.Z. CHO, J.M. NOH, Acceleration of the analytic function expansion nodal method by two-factor two-node nonlinear iteration, Nucl. Sci. Eng. 132 (1999) 193.
- J.M. NOH, An AFEN equivalent hexagonal nodal method based on the single-node nonlinear FDM response matrix, Trans. KNS Autumn Mtg, Yeosu, Korea (2018). October 25-26.
- H.G. Joo, et al., One-node solution based nonlinear analytic nodal method, in: Trans. KNS Autumn Mtg, Pohang, Korea, 2000. May 26-27 (in Korean).
- J.M. NOH, et al., A general approach to multigroup extension of the analytic function expansion nodal method based on matrix function theory, in: Proc. 1996 Joint Intl. Conf. Mathematical Methods and Super Computing for Nuclear Applications, Saratoga Springs, New York, Octorber 6-10 vol. 1, American Nuclear Society, 1997, p. 144, 1997.
- N. DUNFORD, J.T. SCHWARTZ, Linear Operators Part I: General Theory, Interscience Publishers, New York, 1971.
- K. KOEBKE, A new approach to homogenization and group condensation, in: Proc. IAEA Technical Committee Mtg, International Atomic Energy Agency, Lugano, Switzerland, 1978, p. 303. November 1978, IAEA-TECDOC 231.
- K.S. SMITH, Spatial Homogenization Methods for Light Water Reactor Analysis, Massachusetts Institute of Technology, 1980. PhD Thesis.
- S. Nakamura, Computational Methods in Engineering and Science, with Applications to Fluid Dynamics and Nuclear Systems, John Wiley & Sons, Inc., 1977.
- Y.A. CHAO, Y.A. SHATILLA, Conformal mapping and hexagonal nodal methods-II; implementation in the ANC-H code, Nucl. Sci. Eng. 121 (1995) 210. https://doi.org/10.13182/NSE95-A28559
- CAPP v3.0 Verification Report, KAERI/TR-7647/2019, Korea Atomic Energy Research Institute KAERI, 2019.