DOI QR코드

DOI QR Code

Novel respiratory infectious diseases in Korea

  • Kim, Hyun Jung (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine)
  • Received : 2020.07.16
  • Accepted : 2020.09.06
  • Published : 2020.10.31

Abstract

Respiratory infections are very common and highly contagious. Respiratory infectious diseases affect not only the person infected but also the family members and the society. As medical sciences advance, several diseases have been conquered; however, the impact of novel infectious diseases on the society is enormous. As the clinical presentation of respiratory infections is similar regardless of the pathogen, the causative agent is not distinguishable by symptoms alone. Moreover, it is difficult to develop a cure because of the various viral mutations. Various respiratory infectious diseases ranging from influenza, which threaten the health of mankind globally, to the coronavirus disease 2019, which resulted in a pandemic, exist. Contrary to human expectations that development in health care and improvement in hygiene will conquer infectious diseases, humankind's health and social systems are threatened by novel infectious diseases. Owing to the development of transport and trading activity, the rate of spread of new infectious diseases is increasing. As respiratory infections can threaten the members of the global community at any time, investigations on preventing the transmission of these diseases as well as development of effective antivirals and vaccines are of utmost importance and require a worldwide effort.

Keywords

References

  1. Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic. Bull Hist Med 2002;76:105-15. https://doi.org/10.1353/bhm.2002.0022
  2. Guarner J. Three emerging coronaviruses in two decades. Am J Clin Pathol 2020;153:420-1. https://doi.org/10.1093/ajcp/aqaa029
  3. Dowell SF, Ho MS. Seasonality of infectious diseases and severe acute respiratory syndrome-what we don't know can hurt us. Lancet Infect Dis 2004;4:704-8. https://doi.org/10.1016/S1473-3099(04)01177-6
  4. Nicholson KG, Wood JM, Zambon M. Influenza. Lancet 2003;362:1733-45. https://doi.org/10.1016/S0140-6736(03)14854-4
  5. Ghendon Y. Introduction to pandemic influenza through history. Eur J Epidemiol 1994;10:451-3. https://doi.org/10.1007/BF01719673
  6. Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza; Bautista E, Chotpitayasunondh T, Gao Z, Harper SA, Shaw M, et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2010;362:1708-19. https://doi.org/10.1056/NEJMra1000449
  7. Lessler J, Reich NG, Cummings DA; New York City Department of Health and Mental Hygiene Swine Influenza Investigation Team. Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. N Engl J Med 2009;361:2628-36. https://doi.org/10.1056/NEJMoa0906089
  8. Hong K, Sohn S, Chun BC. Estimating influenza-associated mortality in Korea: the 2009-2016 seasons. J Prev Med Public Health 2019;52:308-15. https://doi.org/10.3961/jpmph.19.156
  9. Paules C, Subbarao K. Influenza. Lancet 2017;390:697-708. https://doi.org/10.1016/S0140-6736(17)30129-0
  10. Zangrillo A, Biondi-Zoccai G, Landoni G, Frati G, Patroniti N, Pesenti A, et al. Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: a systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO. Crit Care 2013;17:R30. https://doi.org/10.1186/cc12512
  11. Noah MA, Peek GJ, Finney SJ, Griffiths MJ, Harrison DA, Grieve R, et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011;306:1659-68. https://doi.org/10.1001/jama.2011.1471
  12. Cho J, Lee HJ, Hong SB, Suh GY, Park MS, Kim SC, et al. Structure of intensive care unit and clinical outcomes in critically ill patients with influenza A/H1N1 2009. Korean J Crit Care Med 2012;27:65-9. https://doi.org/10.4266/kjccm.2012.27.2.65
  13. Dwyer DE, Smith DW, Catton MG, Barr IG. Laboratory diagnosis of human seasonal and pandemic influenza virus infection. Med J Aust 2006;185:S48-53.
  14. Peaper DR, Landry ML. Rapid diagnosis of influenza: state of the art. Clin Lab Med 2014;34:365-85. https://doi.org/10.1016/j.cll.2014.02.009
  15. Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, et al. Clinical practice guidelines by the Infectious Diseases Society of America: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenzaa. Clin Infect Dis 2019;68:e1-47. https://doi.org/10.1093/cid/ciy745
  16. Hayden FG, Sugaya N, Hirotsu N, Lee N, de Jong MD, Hurt AC, et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med 2018;379:913-23. https://doi.org/10.1056/NEJMoa1716197
  17. Hirotsu N, Sakaguchi H, Sato C, Ishibashi T, Baba K, Omoto S, et al. Baloxavir marboxil in Japanese pediatric patients with influenza: safety and clinical and virologic outcomes. Clin Infect Dis 2020;71:971-81. https://doi.org/10.1093/cid/ciz908
  18. Ison MG, Portsmouth S, Yoshida Y, Shishido T, Mitchener M, Tsuchiya K, et al. Early treatment with baloxavir marboxil in high-risk adolescent and adult outpatients with uncomplicated influenza (CAPSTONE-2): a randomised, placebo-controlled, phase 3 trial. Lancet Infect Dis 2020;20:1204-14. https://doi.org/10.1016/S1473-3099(20)30004-9
  19. The Lancet. Preparing for seasonal influenza. Lancet 2018;391:180.
  20. Hayden FG, Belshe R, Villanueva C, Lanno R, Hughes C, Small I, et al. Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with or without postexposure prophylaxis. J Infect Dis 2004;189:440-9. https://doi.org/10.1086/381128
  21. Hayden FG, Gubareva LV, Monto AS, Klein TC, Elliot MJ, Hammond JM, et al. Inhaled zanamivir for the prevention of influenza in families. Zanamivir Family Study Group. N Engl J Med 2000;343:1282-9. https://doi.org/10.1056/NEJM200011023431801
  22. Uyeki TM. Baloxavir for postexposure prophylaxis against influenza in households. N Engl J Med 2020;383:389-90. https://doi.org/10.1056/NEJMe2022702
  23. Hak E, Hoes AW, Verheij TJ. Influenza vaccinations: who needs them and when? Drugs 2002;62:2413-20. https://doi.org/10.2165/00003495-200262170-00001
  24. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003;361:1319-25. https://doi.org/10.1016/S0140-6736(03)13077-2
  25. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348:1953-66. https://doi.org/10.1056/NEJMoa030781
  26. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003;348:1967-76. https://doi.org/10.1056/NEJMoa030747
  27. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 2007;170:1136-47. https://doi.org/10.2353/ajpath.2007.061088
  28. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, et al. The genome sequence of the SARS-associated coronavirus. Science 2003;300:1399-404. https://doi.org/10.1126/science.1085953
  29. Lim S, Choi HS, Shin H, Ahn JH, Baik JJ, Choi YH, et al. Three cases of severe acute respiratory syndrome imported into South Korea. Korean J Med 2004;67:655-61.
  30. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14:523-34. https://doi.org/10.1038/nrmicro.2016.81
  31. Liu CL, Lu YT, Peng MJ, Chen PJ, Lin RL, Wu CL, et al. Clinical and laboratory features of severe acute respiratory syndrome vis-a-vis onset of fever. Chest 2004;126:509-17. https://doi.org/10.1378/chest.126.2.509
  32. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007;20:660-94. https://doi.org/10.1128/CMR.00023-07
  33. Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003;348:1977-85. https://doi.org/10.1056/NEJMoa030666
  34. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003;300:1394-9. https://doi.org/10.1126/science.1085952
  35. Wong KT, Antonio GE, Hui DS, Lee N, Yuen EH, Wu A, et al. Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients. Radiology 2003;228:401-6. https://doi.org/10.1148/radiol.2282030593
  36. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003;348:1986-94. https://doi.org/10.1056/NEJMoa030685
  37. Hui DS, Wong PC, Wang C. SARS: clinical features and diagnosis. Respirology 2003;8(Suppl 1):S20-4. https://doi.org/10.1046/j.1440-1843.2003.00520.x
  38. Chan PK, To WK, Ng KC, Lam RK, Ng TK, Chan RC, et al. Laboratory diagnosis of SARS. Emerg Infect Dis 2004;10:825-31. https://doi.org/10.3201/eid1005.030682
  39. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006;3:e343. https://doi.org/10.1371/journal.pmed.0030343
  40. Seto WH, Tsang D, Yung RW, Ching TY, Ng TK, Ho M, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 2003;361:1519-20. https://doi.org/10.1016/S0140-6736(03)13168-6
  41. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814-20. https://doi.org/10.1056/NEJMoa1211721
  42. Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis 2018;18:e217-27. https://doi.org/10.1016/S1473-3099(18)30127-0
  43. Kim KH, Tandi TE, Choi JW, Moon JM, Kim MS. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect 2017;95:207-13. https://doi.org/10.1016/j.jhin.2016.10.008
  44. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet 2020;395:1063-77. https://doi.org/10.1016/S0140-6736(19)33221-0
  45. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 2013;13:752-61. https://doi.org/10.1016/S1473-3099(13)70204-4
  46. Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014;160:389-97. https://doi.org/10.7326/M13-2486
  47. Choi WJ, Lee KN, Kang EJ, Lee H. Middle East respiratory syndrome-coronavirus infection: a case report of serial computed tomographic findings in a young male patient. Korean J Radiol 2016;17:166-70. https://doi.org/10.3348/kjr.2016.17.1.166
  48. Ajlan AM, Ahyad RA, Jamjoom LG, Alharthy A, Madani TA. Middle East respiratory syndrome coronavirus (MERS-CoV) infection: chest CT findings. AJR Am J Roentgenol 2014;203:782-7. https://doi.org/10.2214/AJR.14.13021
  49. Elkholy AA, Grant R, Assiri A, Elhakim M, Malik MR, Van Kerkhove MD. MERS-CoV infection among healthcare workers and risk factors for death: retrospective analysis of all laboratory-confirmed cases reported to WHO from 2012 to 2 June 2018. J Infect Public Health 2020;13:418-22. https://doi.org/10.1016/j.jiph.2019.04.011
  50. World Health Organization. Laboratory biorisk management for laboratories handling human specimens suspected or confirmed to contain influenza A (H1N1) causing the current international epidemics. Geneva: World Health Organization; 2009.
  51. Huang P, Wang H, Cao Z, Jin H, Chi H, Zhao J, et al. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol 2018;9:1101. https://doi.org/10.3389/fmicb.2018.01101
  52. World Health Organization. Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: interim guidance [Internet]. Geneva: World Health Organization; 2019 [cited 2020 Jul 16]. https://www.who.int/csr/disease/coronavirus_infections/ipc-mers-cov/en/.
  53. Chong YP, Song JY, Seo YB, Choi JP, Shin HS; Rapid Response Team. Antiviral treatment guidelines for Middle East respiratory syndrome. Infect Chemother 2015;47:212-22. https://doi.org/10.3947/ic.2015.47.3.212
  54. Mo Y, Fisher D. A review of treatment modalities for Middle East Respiratory Syndrome. J Antimicrob Chemother 2016;71:3340-50. https://doi.org/10.1093/jac/dkw338
  55. Baharoon S, Memish ZA. MERS-CoV as an emerging respiratory illness: a review of prevention methods. Travel Med Infect Dis 2019;32:101520. https://doi.org/10.1016/j.tmaid.2019.101520
  56. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020;26:729-34. https://doi.org/10.1016/j.cmi.2020.03.026
  57. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020;12:372. https://doi.org/10.3390/v12040372
  58. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 2020;28:174-84.
  59. World Health Organization. Coronavirus disease (COVID-19): situation report, 176 [Internet]. Geneva: World Health Organization; 2020 [cited 2020 Jul 16]. https://apps.who.int/iris/handle/10665/333304.
  60. Bourouiba L. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA 2020;323:1837-8.
  61. Lewis D. Is the coronavirus airborne? Experts can't agree. Nature 2020;580:175. https://doi.org/10.1038/d41586-020-00974-w
  62. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020;382:970-1. https://doi.org/10.1056/NEJMc2001468
  63. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med 2020;382:2372-4. https://doi.org/10.1056/NEJMc2010419
  64. Baj J, Karakula-Juchnowicz H, Teresinski G, Buszewicz G, Ciesielka M, Sitarz E, et al. COVID-19: specific and non-specific clinical manifestations and symptoms: the current state of knowledge. J Clin Med 2020;9:1753. https://doi.org/10.3390/jcm9061753
  65. Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci 2020;35:e174. https://doi.org/10.3346/jkms.2020.35.e174
  66. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med 2020;382:e38. https://doi.org/10.1056/NEJMc2007575
  67. Kim DW, Byeon KH, Kim J, Cho KD, Lee N. The correlation of comorbidities on the mortality in patients with COVID-19: an observational study based on the Korean National Health Insurance big data. J Korean Med Sci 2020;35:e243. https://doi.org/10.3346/jkms.2020.35.e243
  68. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782-3. https://doi.org/10.1001/jama.2020.12839
  69. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33. https://doi.org/10.1056/NEJMoa2001017
  70. Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann Lab Med 2020;40:351-60. https://doi.org/10.3343/alm.2020.40.5.351
  71. Kwon KT, Ko JH, Shin H, Sung M, Kim JY. Drive-through screening center for COVID-19: a safe and efficient screening system against massive community outbreak. J Korean Med Sci 2020;35:e123. https://doi.org/10.3346/jkms.2020.35.e123
  72. Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med 2019;381:2293-303. https://doi.org/10.1056/NEJMoa1910993
  73. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36. https://doi.org/10.1056/NEJMoa2001191
  74. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19-preliminary report. N Engl J Med 2020 May 22 [Epub]. https://doi.org/10.1056/NEJMoa2007764.
  75. Goldman JD, Lye DC, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med 2020 May 27 [Epub]. https://doi.org/10.1056/NEJMoa2015301.
  76. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020;382:2327-36. https://doi.org/10.1056/NEJMoa2007016
  77. Lee C, Ahn MY, Byeon K, Choi JP, Hahm C, Kim H, et al. Clinical experience with use of remdesivir in the treatment of severe acute respiratory syndrome coronavirus 2: a case series. Infect Chemother 2020;52:e46.
  78. Norrie JD. Remdesivir for COVID-19: challenges of underpowered studies. Lancet 2020;395:1525-7. https://doi.org/10.1016/S0140-6736(20)31023-0
  79. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020;55:105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
  80. Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LC, Veiga VC, Avezum A, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med 2020 Jul 23 [Epub]. https://doi.org/10.1056/NEJMoa2019014.
  81. Hong KS, Jang JG, Hur J, Lee JH, Kim HN, Lee W, et al. Early hydroxychloroquine administration for rapid severe acute respiratory syndrome coronavirus 2 eradication. Infect Chemother 2020;52:e43.
  82. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020;35:e79. https://doi.org/10.3346/jkms.2020.35.e79
  83. Kim JW, Kim EJ, Kwon HH, Jung CY, Kim KC, Choe JY, et al. Lopinavir-ritonavir versus hydroxychloroquine for viral clearance and clinical improvement in patients with mild to moderate coronavirus disease 2019. Korean J Intern Med 2020 Jun 16 [Epub]. https://doi.org/10.3904/kjim.2020.224.
  84. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med 2020;382:1787-99. https://doi.org/10.1056/NEJMoa2001282
  85. Zhang JJ, Lee KS, Ang LW, Leo YS, Young BE. Risk factors of severe dsease and efficacy of treatment in patients infected with COVID-19: a systematic review, meta-analysis and meta-regression analysis. Clin Infect Dis 2020 May 14 [Epub]. https://doi.org/10.1093/cid/ciaa576.
  86. Cheng CY, Lee YL, Chen CP, Lin YC, Liu CE, Liao CH, et al. Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan. J Microbiol Immunol Infect 2020;53:488-92. https://doi.org/10.1016/j.jmii.2020.03.032
  87. Garraud O, Heshmati F, Pozzetto B, Lefrere F, Girot R, Saillol A, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol 2016;23:39-44. https://doi.org/10.1016/j.tracli.2015.12.003
  88. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44-6. https://doi.org/10.1007/s10096-004-1271-9
  89. Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother 2005;56:919-22. https://doi.org/10.1093/jac/dki346
  90. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-65. https://doi.org/10.1172/JCI138745
  91. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020;324:1-11.
  92. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4. https://doi.org/10.1016/S0140-6736(20)30628-0
  93. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with covid-19-preliminary report. N Engl J Med 2020 Jul 17 [Epub]. https://doi.org/10.1056/NEJMoa2021436.
  94. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020;2:e393-400. https://doi.org/10.1016/S2665-9913(20)30164-8
  95. Thanh Le T, Andreadakis Z, Kumar A, Gomez Roman R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19:305-6. https://doi.org/10.1038/d41573-020-00073-5
  96. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. N Engl J Med 2020;382:1969-73. https://doi.org/10.1056/NEJMp2005630
  97. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schunemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395:1973-87. https://doi.org/10.1016/S0140-6736(20)31142-9

Cited by

  1. Infectious Respiratory Diseases Decreased during the COVID-19 Pandemic in South Korea vol.18, pp.11, 2021, https://doi.org/10.3390/ijerph18116008