• Title/Summary/Keyword: Human influenza

Search Result 124, Processing Time 0.046 seconds

Interpretation and Prospection of Influenza Virus through Swine-origin Influenza Virus (신종플루 바이러스를 통한 인플루엔자 바이러스의 해석 및 전망)

  • Chang, Kyung-Soo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) is endemic in swine, and classified into influenza A and influenza C but not influenza B. Swine influenza A includes H1N1, H1N2, H3N1, H3N2 and H2N3 subtypes. Infection of SIV occurs in only swine and that of S-OIV is rare in human. What human can be infected with S-OIV is called as zoonotic swine flu. Pandemic 2009 swine influenza H1N1 virus (2009 H1N1) was emerged in Mexico, America and Canada and spread worldwide. The triple-reassortant H1N1 resulting from antigenic drift was contained with HA, NA and PB1 of human or swine influenza virus, PB2 and PA polymerase of avian influenza virus, and M, NP and NS of swine influenza virus, The 2009 H1N1 enables to transmit to human and swine. The symptoms and signs in human infected with 2009 H1N1 virus are fever, cough and sore throat, pneumonia as well as diarrhea and vomiting. Co-infection with other viruses and bacteria such as Streptococcus pneumoniae can occur high mortality in high-risk population. 2009 H1N1 virus was easily differentiated from seasonal flu by real time RT-PCR which contributed rapid and confirmed diagnosis. The 2009 H1N1 virus was treated with NA inhibitors such as oseltamivir (Tamiflu) and zanamivir (Relenza) but not with adamantanes such as amantadine and rimantadine. Evolution of influenza virus has continued in various hosts. Development of a more effective vaccine against influenza prototypes is needed to protect new influenza infection such as H5 and H7 subtypes to infect to multi-organ and cause high pathogenicity.

  • PDF

Cells in the Respiratory and Intestinal Tracts of Chickens Have Different Proportions of both Human and Avian Influenza Virus Receptors

  • Kim, Jin-A;Ryu, Si-Yun;Seo, Sang-Heui
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.366-369
    • /
    • 2005
  • Avian influenza viruses playa crucial role i,n the creation of human pandemic viruses. In this study, we have demonstrated that both human and avian influenza receptors exist in cells in the respiratory and intestinal tracts of chickens. We have also determined that primarily cultured chicken lung cells can support the replication of both avian and human influenza viruses.

The Possibility of Avian Influenza Virus Infection in Human (가금인플루엔자 바이러스의 인체 감염 가능성)

  • 모인필;하봉도;송창선;김재홍
    • Korean Journal of Poultry Science
    • /
    • v.31 no.2
    • /
    • pp.109-118
    • /
    • 2004
  • Avian influenza(AI) is an epizootic disease of variable severity caused by type A influenza viruses of the orthomyxovirus group. Chickens were the most frequently affected avian species with AI viruses. There were many outbreaks of fowl plague, now known as highly pathogenic AI(HP AI), throughout the world since Perroncito described the fowl plague in 1978 in Italy. In recent years HPAI viruses of different serotypes such as H5, H7 and H9 has been isolated from humans on several occasions either related with outbreak of HPAI in birds or not. In 1997, one of the most noteworthy events in AI history was the human mortality with H5N1 HPAI virus infection in Hong Kong. Six persons of total 18 persons with clinical signs of influenza were died. Recently the human cases with mortality related with HP AI outbreaks in poultry industry has been increased such as outbreaks of HP AI throughout Asia countries including Korea, Japan, China, Vietnam, Thailand and others in 2003. Although these outbreaks revealed the capable of spreading from birds to human, the capability for transmission between people was not clear. Therefore, this report will review the possibility of HP AI infection in human associated with HPAI outbreak in poultry industry.

Comparative Study of the Nucleotide Bias Between the Novel H1N1 and H5N1 Subtypes of Influenza A Viruses Using Bioinformatics Techniques

  • Ahn, In-Sung;Son, Hyeon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Novel influenza A (H1N1) is a newly emerged flu virus that was first detected in April 2009. Unlike the avian influenza (H5N1), this virus has been known to be able to spread from human to human directly. Although it is uncertain how severe this novel H1N1 virus will be in terms of human illness, the illness may be more widespread because most people will not have immunity to it. In this study, we compared the codon usage bias between the novel H1N1 influenza A viruses and other viruses such as H1N1 and H5N1 subtypes to investigate the genomic patterns of novel influenza A (H1N1). Totally, 1,675 nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A virus, including H1N1 and H5N1 subtypes occurring from 2004 to 2009, were used. As a result, we found that the novel H1N1 influenza A viruses showed the most close correlations with the swine-origin H1N1 subtypes than other H1N1 viruses, in the result from not only the analysis of nucleotide compositions, but also the phylogenetic analysis. Although the genetic sequences of novel H1N1 subtypes were not exactly the same as the other H1N1 subtypes, the HA and NA genes of novel H1N1s showed very similar codon usage patterns with other H1N1 subtypes, especially with the swine-origin H1N1 influenza A viruses. Our findings strongly suggested that those novel H1N1 viruses seemed to be originated from the swine-host H1N1 viruses in terms of the codon usage patterns.

Comparison of the Incidence Rate of Influenza-like Illness between an Influenza-Vaccinated Group and Unvaccinated Group (독감 예방접종군과 미접종군 간의 독감의사질병 발생 차이 비교)

  • Yoo, So-Yeon;Kim, Og Son
    • Journal of Korean Biological Nursing Science
    • /
    • v.18 no.2
    • /
    • pp.110-117
    • /
    • 2016
  • Purpose: This study was conducted to compare the incidence rate of influenza-like illnesses between an influenza-vaccinated group and a non-vaccinated group of adults. Methods: From July 1, 2015 to July 30, 2015, self-reporting questionnaires were given to 300 adults living in the Seoul and Gyeonggi-do, Korea. 265 survey questionnaires that had an earnest response were used for data analysis. The collected data were analyzed using the statistical software SPSS Win 18.0 version. Results: 52.1% of the participants were vaccinated. The incidence rate of influenza-like illnesses was 11.3%. Within the influenza-vaccinated group, 12.3% experienced an influenza-like illness. On the other hand, in the non-vaccinated group, 10.2% experienced an influenza-like illness. There was no statistically significant difference in the incidence of influenza-like illness depending on vaccination status. Conclusion: During the influenza season from Fall 2014 to Spring 2015, there was no significant difference on the prevalence of influenza-like illness between the study participants whether they were vaccinated or not. Thus, future studies should confirm and closely examine this fact, whether it was a matter of pandemic strain selection or whether there were differences in the effects of adult influenza vaccination as reported in previous studies.

Anti-influenza Compounds Isolated from Descurainia sophia Seeds

  • Woo Seung Yang;Choong Je Ma
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2023
  • Descurainia sophia seeds methanol extract showed significant anti-influenza activity and we tried to isolate anti-influenza compounds from the D. sophia extract. D. sophia seeds were extracted with 80% methanol and fractionated with n-hexane, ethyl acetate, CHCl3 and n-butanol. The anti-influenza activity of each fraction was assessed using sulforhodamine B (SRB) method in A549 cells, human-derived lung cancer cells. The ethyl acetate and CHCl3 fractions showed the most potent anti-influenza activity. Seven compounds were isolated from CHCl3 fraction and identified 1-decanol (1), 2-(3,4-dihydroxy-2-methylenebutoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (2), daucosterol (3), isorhamnetin (4), quercetin (5), sinapic acid (6), and helveticoside (7) by spectroscopic data such as UV, IR, 1H-NMR, 13C-NMR and mass spectroscopy. Anti-influenza activities of isolated compounds were evaluated using SRB method in A549 cells. Compounds 3, 4 and 7 had significant anti-influenza activity in a dose-dependent manner.

Identification of Reassortant Pandemic H1N1 Influenza Virus in Korean Pigs

  • Han, Jae-Yeon;Park, Sung-Jun;Kim, Hye-Kwon;Rho, Se-Mi;Nguyen, Giap Van;Song, Dae-Sub;Kang, Bo-Kyu;Moon, Hyung-Jun;Yeom, Min-Joo;Park, Bong-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.699-707
    • /
    • 2012
  • Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin-Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

Rapid Molecular Diagnosis using Real-time Nucleic Acid Sequence Based Amplification (NASBA) for Detection of Influenza A Virus Subtypes

  • Lim, Jae-Won;Lee, In-Soo;Cho, Yoon-Jung;Jin, Hyun-Woo;Choi, Yeon-Im;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Influenza A virus of the Orthomyxoviridae family is a contagious respiratory pathogen that continues to evolve and burden in the human public health. It is able to spread efficiently from human to human and have the potential to cause pandemics with significant morbidity and mortality. It has been estimated that every year about 500 million people are infected with this virus, causing about approximately 0.25 to 0.5 million people deaths worldwide. Influenza A viruses are classified into different subtypes by antigenicity based on their hemagglutinin (HA) and neuraminidase (NA) proteins. The sudden emergence of influenza A virus subtypes and access for epidemiological analysis of this subtypes demanded a rapid development of specific diagnostic tools. Also, rapid identification of the subtypes can help to determine the antiviral treatment, because the different subtypes have a different antiviral drug resistance patterns. In this study, our aim is to detect influenza A virus subtypes by using real-time nucleic acid sequence based amplification (NASBA) which has high sensitivity and specificity through molecular beacon. Real-time NASBA is a method that able to shorten the time compare to other molecular diagnostic tools and is performed by isothermal condition. We selected major pandemic influenza A virus subtypes, H3N2 and H5N1. Three influenza A virus gene fragments such as HA, NA and matrix protein (M) gene were targeted. M gene is distinguished influenza A virus from other influenza virus. We designed specific primers and molecular beacons for HA, NA and M gene, respectively. In brief, the results showed that the specificity of the real-time NASBA was higher than reverse transcription polymerase chain reaction (RT-PCR). In addition, time to positivity (TTP) of this method was shorter than real-time PCR. This study suggests that the rapid detection of neo-appearance pandemic influenza A virus using real-time NASBA has the potential to determine the subtypes.

Molecular characterization of H3N2 influenza A virus isolated from a pig by next generation sequencing in Korea

  • Oh, Yeonsu;Moon, Sung-Hyun;Ko, Young-Seung;Na, Eun-Jee;Tark, Dong-Seob;Oem, Jae-Ku;Kim, Won-Il;Rim, Chaekwang;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Swine influenza (SI) is an important respiratory disease in pigs and epidemic worldwide, which is caused by influenza A virus (IAV) belonging to the family of Orthomyxoviridae. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs, and can serve as a 'mixing vessel' for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/21810/2021 (sw21810, H3N2 subtype). BLASTN sequence analysis of 8 gene segments of the isolated virus revealed a high degree of nucleotide similarity (94.76 to 100%) to porcine strains circulating in Korea and the United States. Out of 8 genome segments, the HA gene was closely related to that of isolates from cluster I. Additionally, the NA gene of the isolate belonged to a Korean Swine H1N1 origin, and the PB2, PB1, NP and NS genes of the isolate were grouped into that of the Triple reassortant swine H3N2 origin virus. The PA and M genes of the isolate belonged to 2009 Pandemic H1N1 lineage. Human infection with mutants was most common through contact with infected pigs. Our results suggest the need for periodic close monitoring of this novel swine H3N2 influenza virus from a public health perspective.