DOI QR코드

DOI QR Code

Electrochemical Synthesis of TiO2 Microcones/CNT Composites as Anode Material for Lithium Ion Batteries

TiO2 마이크로콘/CNT 복합체의 전기화학적 합성 및 리튬 이온 전지 음극 소재로의 응용

  • Shin, Nahyun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 신나현 (인하대학교, 화학공학과) ;
  • 김용태 (인하대학교, 화학공학과) ;
  • 최진섭 (인하대학교, 화학공학과)
  • Received : 2020.07.30
  • Accepted : 2020.08.21
  • Published : 2020.10.12

Abstract

The performance of TiO2 microcones/CNT composites as an anode material for lithium ion batteries was investigated. TiO2 microcones/CNT composites were prepared by the polarization followed by electrophoretic deposition approaches on anodic TiO2 microcones, which were composed of individual nanofragments resulting in a large surface area where lithium ion can be stored. Compared to pristine TiO2 microcones, TiO2 microcones/CNT composite electrodes showed higher areal capacity with a stable cyclability due to an enhanced electrical and lithium ion conductivity. Furthermore, TiO2 microcones/CNT composite electrodes exhibited good cycle life characteristics and excellent rate retention under a high current density of up to 20 C.

본 연구는 리튬이온 이차전지의 음극재로서 TiO2 마이크로콘/CNT 복합체를 제조하여 배터리의 성능을 측정하였다. 양극산화법을 통해 리튬이온이 저장될 수 있는 넓은 표면적의 나노조각으로 구성된 TiO2 마이크로콘 구조를 제조하였다. 이어서 polarization과 전기 영동법을 통해 CNT를 증착하였다. TiO2 마이크로콘/CNT 복합체 전극은 전기전도도와 리튬이온 전도도가 향상되어 순수한 TiO2 마이크로콘 전극 대비 더 높은 용량과 사이클 안정성을 보였다. 또한 TiO2 마이크로콘/CNT 복합체는 최대 20 C의 높은 전류밀도에서도 우수한 수명특성과 속도유지율을 보였다.

Keywords

References

  1. C.-X. Zu and H. Li, Thermodynamic analysis on energy densities of batteries, J. Energy Environ. Sci., 4, 2614-2624 (2011). https://doi.org/10.1039/c0ee00777c
  2. R. R. Chianelli, Microscopic studies of transition metal chalcogenides, J. Cryst. Growth, 34, 239-244 (1976). https://doi.org/10.1016/0022-0248(76)90135-4
  3. T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, Commercial carbonaceous materials as lithium intercalation anodes, J. Electrochem. Soc., 142, 3297-3302 (1995). https://doi.org/10.1149/1.2049977
  4. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10, 725-763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  5. G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L.Tirado, and P. Knauth, Alternative li-Ion battery electrode based on self-organized titania nanotubes, Chem. Mater., 21, 63-67 (2009). https://doi.org/10.1021/cm801670u
  6. G.-N. Zhu, Y,-G. Wang, and Y.-Y. Xia, Ti-based compounds as anode materials for li-ion batteries, Energy Environ. Sci., 5, 6652-6667 (2012). https://doi.org/10.1039/c2ee03410g
  7. O. Rhee, G. Lee, and J. Choi, Highly ordered $TiO_2$ microcones with high rate performance for enhanced lithium-ion storage, ACS Appl. Mater. Interfaces, 8, 14558-14563 (2016). https://doi.org/10.1021/acsami.6b03099
  8. J.-P. Yen, C.-C. Chang, Y.-R. Lin, S.-T. Shen, and J.-L. Hong, Sputtered copper coating on silicon/graphite composite anode for lithium ion batteries, J. Alloy. Compd., 598, 184-190 (2014). https://doi.org/10.1016/j.jallcom.2014.01.230
  9. M. L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, and M. Rossi, Si/C hybrid nanostructures for Li-ion anodes: An overview, J. Power Sources, 246, 167-177 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.065
  10. J. Liu, H. Feng, J. Jiang, D. Qian, J. Li, S. Peng, and Y Liu, Anatase-$TiO_2$/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries, J. Alloy. Compd., 603, 144-148 (2014). https://doi.org/10.1016/j.jallcom.2014.03.089
  11. Z. Su, L. Zhang, F. Jiang, and M. Hong, Formation of crystalline $TiO_2$ by anodic oxidation of titanium, Prog. Nat. Sci., 23, 294-301 (2013) https://doi.org/10.1016/j.pnsc.2013.04.004
  12. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, and S. Bonnamy, Synthesis and characterization of carbon nanotubes-$TiO_2$ nanocomposites, Carbon, 42, 1147-1151 (2004). https://doi.org/10.1016/j.carbon.2003.12.041
  13. A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47-57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
  14. P. Kubiak, T. Froschl, N. Husing, U. Hormann, U. Kaiser, R. Schiller, C.K. Weiss, K. Landfester, and M. Wohlfahrt-Mehrens, $TiO_2$ anatase nanoparticle networks: Synthesis, structure, and electrochemical performance, Small, 7, 1690-1696 (2011). https://doi.org/10.1002/smll.201001943
  15. Y. X. Wang, J. Xie, G. S. Cao, T. J. Zhu, and X. B. Zhao, Electrochemical performance of $TiO_2$/carbon nanotubes nanocomposite prepared by an in situ route for li-ion batteries, J. Mater. Res., 27, 417-423 (2012). https://doi.org/10.1557/jmr.2011.406
  16. P. Zhang, J. Qiu, Z. Zheng, G. Liu, M. Ling, W. Martens, H. Wang, H. Zhao, and S. Zhang, Free-standing and bendable carbon nanotubes/$TiO_2$ nanofibres composite electrodes for flexible lithium ion batteries, Electrochim. Acta, 104, 41-47 (2013). https://doi.org/10.1016/j.electacta.2013.04.089
  17. X. Li, M. Qu, Y. Huai, and Z. Yu, Preparation and electrochemical performance of $Li_4Ti_5O_{12}$/carbon/carbon nano-tubes for lithium ion battery, Electrochim. Acta, 55, 2978-2982 (2010). https://doi.org/10.1016/j.electacta.2010.01.015