DOI QR코드

DOI QR Code

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met

  • Lin, Feng-Jie (Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital) ;
  • Lin, Xian-Dong (Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital) ;
  • Xu, Lu-Ying (Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital) ;
  • Zhu, Shi-Quan (Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital)
  • 투고 : 2020.06.15
  • 심사 : 2020.09.21
  • 발행 : 2020.10.31

초록

To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.

키워드

참고문헌

  1. Bao, X., Ren, T., Huang, Y., Sun, K., Wang, S., Liu, K., Zheng, B., and Guo, W. (2017). Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis. 8, e2605. https://doi.org/10.1038/cddis.2017.31
  2. Bayne, K. (1996). Revised guide for the care and use of laboratory animals available. American Physiological Society. Physiologist 39, 199, 208-211.
  3. Chen, Q.Y., Wen, Y.F., Guo, L., Liu, H., Huang, P.Y., Mo, H.Y., Li, N.W., Xiang, Y.Q., Luo, D.H., Qiu, F., et al. (2011). Concurrent chemoradiotherapy vs radiotherapy alone in stage II nasopharyngeal carcinoma: phase III randomized trial. J. Natl. Cancer Inst. 103, 1761-1770. https://doi.org/10.1093/jnci/djr432
  4. Colaco, R.J., Betts, G., Donne, A., Swindell, R., Yap, B.K., Sykes, A.J., Slevin, N.J., Homer, J.J., and Lee, L.W. (2013). Nasopharyngeal carcinoma: a retrospective review of demographics, treatment and patient outcome in a single centre. Clin. Oncol. (R. Coll. Radiol.) 25, 171-177. https://doi.org/10.1016/j.clon.2012.10.006
  5. Dai, C., Xie, Y., Zhuang, X., and Yuan, Z. (2018). MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed. Pharmacother. 104, 763-770. https://doi.org/10.1016/j.biopha.2018.05.077
  6. Fang, B., Zhu, J., Wang, Y., Geng, F., and Li, G. (2015). MiR-454 inhibited cell proliferation of human glioblastoma cells by suppressing PDK1 expression. Biomed. Pharmacother. 75, 148-152. https://doi.org/10.1016/j.biopha.2015.07.029
  7. Han, S., Liang, Y., Li, Y., and Du, W. (2016). Long noncoding RNA identification: comparing machine learning based tools for long noncoding transcripts discrimination. Biomed Res. Int. 2016, 8496165.
  8. Han, S., Park, K., Bae, B.N., Kim, K.H., Kim, H.J., Kim, Y.D., and Kim, H.Y. (2003). E2F1 expression is related with the poor survival of lymph nodepositive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res. Treat. 82, 11-16. https://doi.org/10.1023/B:BREA.0000003843.53726.63
  9. Hung, C.M., Kuo, D.H., Chou, C.H., Su, Y.C., Ho, C.T., and Way, T.D. (2011). Osthole suppresses hepatocyte growth factor (HGF)-induced epithelialmesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J. Agric. Food Chem. 59, 9683-9690. https://doi.org/10.1021/jf2021489
  10. Hung, J.J., Hsueh, C.T., Chen, K.H., Hsu, W.H., and Wu, Y.C. (2012). Clinical significance of E2F1 protein expression in non-small cell lung cancer. Exp. Hematol. Oncol. 1, 18. https://doi.org/10.1186/2162-3619-1-18
  11. Jia, W.H. and Qin, H.D. (2012). Non-viral environmental risk factors for nasopharyngeal carcinoma: a systematic review. Semin. Cancer Biol. 22, 117-126. https://doi.org/10.1016/j.semcancer.2012.01.009
  12. Kamran, S.C., Riaz, N., and Lee, N. (2015). Nasopharyngeal carcinoma. Surg. Oncol. Clin. N. Am. 24, 547-561. https://doi.org/10.1016/j.soc.2015.03.008
  13. Kong, F., Cai, B., Lin, S., Zhang, J., Wang, Y., and Fu, Q. (2015). Assessment of radiotherapy combined with adjuvant chemotherapy in the treatment of patients with advanced nasopharyngeal carcinoma: a prospective study. J. BUON 20, 206-211.
  14. Li, T., Xu, C., Cai, B., Zhang, M., Gao, F., and Gan, J. (2016). Expression and clinicopathological significance of the lncRNA HOXA11-AS in colorectal cancer. Oncol. Lett. 12, 4155-4160. https://doi.org/10.3892/ol.2016.5129
  15. Li, Y., Zhang, S., Tang, Z., Chen, J., and Kong, W. (2011). Silencing of c-Met by RNA interference inhibits the survival, proliferation, and invasion of nasopharyngeal carcinoma cells. Tumour Biol. 32, 1217-1224. https://doi.org/10.1007/s13277-011-0225-y
  16. Liu, Z., Chen, Z., Fan, R., Jiang, B., Chen, X., Chen, Q., Nie, F., Lu, K., and Sun, M. (2017). Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol. Cancer 16, 82. https://doi.org/10.1186/s12943-017-0651-6
  17. Lu, Q., Zhao, N., Zha, G., Wang, H., Tong, Q., and Xin, S. (2017). LncRNA HOXA11-AS exerts oncogenic functions by repressing p21 and miR-124 in uveal melanoma. DNA Cell Biol. 36, 837-844. https://doi.org/10.1089/dna.2017.3808
  18. Lv, W.P., Li, M.X., and Wang, L. (2017). Peroxiredoxin 1 inhibits lipopolysaccharide-induced oxidative stress in lung tissue by regulating P38/JNK signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 1876-1883.
  19. Niu, G., Li, B., Sun, J., and Sun, L. (2015). miR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-Met. Cell Prolif. 48, 348-355. https://doi.org/10.1111/cpr.12187
  20. Que, W., Chen, J., Chuang, M., and Jiang, D. (2012). Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS 120, 195-203. https://doi.org/10.1111/j.1600-0463.2011.02836.x
  21. Song, J., Ye, A., Jiang, E., Yin, X., Chen, Z., Bai, G., Zhou, Y., and Liu, J. (2018). Reconstruction and analysis of the aberrant lncRNA-miRNA-mRNA network based on competitive endogenous RNA in CESC. J. Cell. Biochem. 119, 6665-6673. https://doi.org/10.1002/jcb.26850
  22. Sun, M., Nie, F., Wang, Y., Zhang, Z., Hou, J., He, D., Xie, M., Xu, L., De, W., Wang, Z., et al. (2016). LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 76, 6299-6310. https://doi.org/10.1158/0008-5472.CAN-16-0356
  23. Tan, Y., Wei, X., Zhang, W., Wang, X., Wang, K., Du, B., and Xiao, J. (2017). Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Oncol. Rep. 37, 1833-1841. https://doi.org/10.3892/or.2017.5413
  24. Tang, X.L., Yan, L., Zhu, L., Jiao, D.M., Chen, J., and Chen, Q.Y. (2017). Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J. Pharmacological Sciences 135, 1-7. https://doi.org/10.1016/j.jphs.2017.06.006
  25. Vadlakonda, L., Pasupuleti, M., and Pallu, R. (2013). Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol. 3, 85. https://doi.org/10.3389/fonc.2013.00085
  26. Wang, Y., Cheng, N., and Luo, J. (2017). Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. J. Biochem. Mol. Toxicol. 31, e21904. https://doi.org/10.1002/jbt.21904
  27. Wang, Z., Huang, Y., and Zhang, J. (2014). Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell. Mol. Biol. Lett. 19, 233-242. https://doi.org/10.2478/s11658-014-0191-7
  28. Wu, X., Ding, N., Hu, W., He, J., Xu, S., Pei, H., Hua, J., Zhou, G., and Wang, J. (2014). Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells. Radiat. Oncol. 9, 179. https://doi.org/10.1186/1748-717X-9-179
  29. Yu, J., Hong, J.F., Kang, J., Liao, L.H., and Li, C.D. (2017). Promotion of LncRNA HOXA11-AS on the proliferation of hepatocellular carcinoma by regulating the expression of LATS1. Eur. Rev. Med. Pharmacol. Sci. 21, 3402-3411.
  30. Zhang, L., Chen, Q.Y., Liu, H., Tang, L.Q., and Mai, H.Q. (2013). Emerging treatment options for nasopharyngeal carcinoma. Drug Des. Devel. Ther. 7, 37-52. https://doi.org/10.2147/dddt.s30753
  31. Zhang, Y., Chen, W.J., Gan, T.Q., Zhang, X.L., Xie, Z.C., Ye, Z.H., Deng, Y., Wang, Z.F., Cai, K.T., Li, S.K., et al. (2017). Clinical significance and effect of lncRNA HOXA11-AS in NSCLC: a study based on bioinformatics, in vitro and in vivo verification. Sci. Rep. 7, 5567. https://doi.org/10.1038/s41598-017-05856-2
  32. Zhang, Y., He, R.Q., Dang, Y.W., Zhang, X.L., Wang, X., Huang, S.N., Huang, W.T., Jiang, M.T., Gan, X.N., Xie, Y., et al. (2016). Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int. 16, 89. https://doi.org/10.1186/s12935-016-0366-6
  33. Zhang, Y., Yuan, Y., Li, Y., Zhang, P., Chen, P., and Sun, S. (2019). An inverse interaction between HOXA11 and HOXA11-AS is associated with cisplatin resistance in lung adenocarcinoma. Epigenetics 14, 949-960. https://doi.org/10.1080/15592294.2019.1625673
  34. Zhao, X., Li, X., Zhou, L., Ni, J., Yan, W., Ma, R., Wu, J., Feng, J., and Chen, P. (2018). LncRNA HOXA11-AS drives cisplatin resistance of human LUAD cells via modulating miR-454-3p/Stat3. Cancer Sci. 109, 3068-3079. https://doi.org/10.1111/cas.13764
  35. Zhou, L., Qu, Y.M., Zhao, X.M., and Yue, Z.D. (2016). Involvement of miR-454 overexpression in the poor prognosis of hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 20, 825-829.
  36. Zhuang, R., Rao, J.N., Zou, T., Liu, L., Xiao, L., Cao, S., Hansraj, N.Z., Gorospe, M., and Wang, J.Y. (2013). miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res. 41, 7905-7919. https://doi.org/10.1093/nar/gkt565

피인용 문헌

  1. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma vol.13, 2020, https://doi.org/10.2147/cmar.s336265
  2. MiR-454-3p Promotes Oxaliplatin Resistance by Targeting PTEN in Colorectal Cancer vol.11, 2020, https://doi.org/10.3389/fonc.2021.638537
  3. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications vol.476, pp.9, 2020, https://doi.org/10.1007/s11010-021-04176-4
  4. Exosomal ERp44 derived from ER-stressed cells strengthens cisplatin resistance of nasopharyngeal carcinoma vol.21, pp.1, 2021, https://doi.org/10.1186/s12885-021-08712-9