• Title/Summary/Keyword: HOXA11-AS

Search Result 4, Processing Time 0.017 seconds

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met

  • Lin, Feng-Jie;Lin, Xian-Dong;Xu, Lu-Ying;Zhu, Shi-Quan
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.856-869
    • /
    • 2020
  • To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.

Involvement of lncRNA-HOTTIP in the Repair of Ultraviolet Light-Induced DNA Damage in Spermatogenic Cells

  • Liang, Meng;Hu, Ke
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.794-803
    • /
    • 2019
  • Ultraviolet light (UV)-induced cellular response has been studied by numerous investigators for many years. Long noncoding RNAs (lncRNAs) are emerging as new regulators of diverse cellular process; however, little is known about the role of lncRNAs in the cellular response to UV treatment. Here, we demonstrate that levels of lncRNA-HOTTIP significantly increases after UV stimulation and regulates the UV-mediated cellular response to UV through the coordinate activation of its neighboring gene Hoxa13 in GC-1 cells (spermatogonia germ cell line). UV-induced, G2/M-phase arrest and early apoptosis can be regulated by lncRNA-HOTTIP and Hoxa13. Furthermore, lncRNA-HOTTIP can up-regulate ${\gamma}-H_2AX$ and p53 expression via Hoxa13 in UV-irradiated GC-1 cells. In addition, p53 has the ability to regulate the expression of both lncRNA-HOTTIP and Hoxa13 in vitro and in vivo. Our results provide new data regarding the role lncRNAs play in the UV response in spermatogenic cells.

Retinoic Acid Induces Abnormal Palate During Embryogenesis in Rat

  • Shin, Jeong-Oh;Park, Hyoung-Woo;Bok, Jin-Woong;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In order to understand the effects of all-trans-RA on palate development, RA was injected into the abdominal cavity of pregnant mice and then the embryos were taken in the following days and analyzed morphologically as well as molecular biologically. When RA was administered at the stage of E11 or E15, the overall craniofacial development was retarded. The length from jaw to eye was shortened, compared to that of normal group. When the E11 embryos were exposed to RA, cleft lip was also found along with the cleft palate. In vitro palate culture experiment also revealed that RA caused cleft palate. When RT-PCR was performed, early stage administration of RA at E11 inhibited the upregulation of Hoxa7 expression at E15 through E17. Whereas in control group, high level of Hoxa7 expression was detected in the palate of E15 to E17. In the case of Bax, the expression was decreased from E16, while remaining constant in control group. When TUNEL analysis was performed following the RA treatment at E15, TUNEL positive cells were detected in the mesenchymal cells as well as epithelial cells of palatal shelves of E16 and in E17 embryos. Whereas in normal control, TUNEL positive cells were observed mostly at the epithelium around the nasal cavity and oral cavity where rugae is made. These results altogether indicate that exposure to RA during palate development causes facial deformity including cleft palate and cleft lip by modulating the expression of homeotic genes such as Hoxa7 as well as an apoptosis-related gene, Bax, and thus malregulating the apoptosis.

ER Stress-Induced Jpk Expression and the Concomitant Cell Death

  • Kim Hye Sun;Chung Hyunjoo;Kong Kyoung-Ah;Park Sungdo;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • A Jopock (Jpk), a trans-acting factor associating with the position-specific regulatory element of murine Hoxa-7, has shown to have a toxicity to both prokaryotic and eukaryotic cells when overexpressed. Since Jpk protein harbors a transmembrane domain and a putative endoplasmic reticulum (ER)-retention signal at the N-terminus, a subcellular localization of the protein was analyzed after fusing it into the green fluorescent protein (GFP): Both N-term (Jpk-EGFP) and C-term tagged-Jpk (EGFP-Jpk) showed to be localized in the ER when analyzed under the fluorescence microscopy after staining the cells with ER- and MitoTracker. Since ER stress triggers the ER-stress mediated apoptosis to eliminate the damaged cells, we analyzed the expression pattern of Jpk under ER-stress condition. When MCF7 cells were treated with the ER-stress inducer such as DTT and EGTA, the expression of Jpk was upregulated at the transcriptional level like that of Grp78, a molecular chaperone well known to be overexpressed under ER-stress condition. In the presence of high concentration of ER-sterss inducer (10 mM), about 70 (DTT) to $95\%$ (EGTA) of cells died stronly expressing ($10\~12$ fold) Jpk. Whereas at the low concentration ($0.001\~1.0\;mM$) of the inducer, the expression of Jpk was increased about 2.5 (EGTA) to 5 fold (DTT), which is rather similar to those of ER chaperone protein Grp78. These results altogether indicate that the ER-stress upregulated the expression of Jpk and the excess stress induces the ER-stress induced apoptosis and the concomitant expression of Jpk.

  • PDF