References
- Akcaoglu, T., Cubukoglu, B. and Awad, A. (2019), "A critical review of slag and fly-ash based geopolymer concrete", Comput. Concrete, 24(5), 453-458. https://doi.org/10.12989/cac.2019.24.5.453.
- American Coal Ash Association (ACAA) (2020), Ash Around the World, www.acaa-usa.org.
- American Society for Testing and Materials (ASTM C127-15). (2015), Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA.
- American Society for Testing and Materials (ASTM C618-19). (2019), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, ASTM International, West Conshohocken, PA.
- Arslan, H. and Baykal, G. (2006), "Utilization of fly ash engineering pellet aggregates", Environ. Geol., 50, 761-770. https://doi.org/10.1007/s00254-006-0248-7.
- Baykal, G. and Doven, A.G. (2000), "Utilization of fly ash as pelletization process; theory, application, areas and research results", Resour. Conserv. Recyc., 30, 59-77. https://doi.org/10.1016/S0921-3449(00)00042-2.
- British Standard (BS 1907-2) (2010), "Tests for mechanical and physical properties of aggregates", Methods for the Determination of Resistance to Fragmentation.
- Cassagnabere, F., Escadeillas, G. and Mouret, M. (2009), "Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete", Constr. Build. Mater., 23, 775-784. https://doi.org/10.1016/j.conbuildmat.2008.02.022.
- Chiou, I.J. and Chen, C.H. (2011), "Properties of artificial lightweight aggregates made from waste sludge", Comp. Comput. Concrete, 8(6), 617-629. http://dx.doi.org/10.12989/cac.2011.8.6.617.
- Doven, A.G. (1998), "Lightweight fly ash aggregate production using cold bonding agglomeration process", Ph.D. Dissertation, Bogazici University, Istanbul, Turkey.
- Elmas, C. (2003), "Yapay sinir aglari", Seckin Yayincilik, Ankara, 21-39. (In Turkish)
- Ergezer, H., Dikmen, M. and Ozdemir, E. (2003), "Yapay sinir aglari ve tanima sistemleri", Pivolka, 14-17. (In Turkish)
- Ferreira, C. (2001), "Gene expression programming; a new adaptive algorithm for solving problems", Complex Syst., 12(2), 87-129.
- Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, Wiley, USA.
- GEP Soft (GeneXproTools 4.0) (2019), http://www.gepsoft.com/.
- Gesoglu, M., Guneyisi, E. and Oz, H.O. (2012), "Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag", Mater. Struct., 45, 1535-1546. https://doi.org/10.1617/s11527-012-9855-9.
- Gesoglu, M., Turan, O. and Guneyisi, E. (2007), "Effects of fly ash properties on characteristics of cold-bonded fly ash lightweight aggregates", Constr. Build. Mater., 21, 1869-1878. https://doi.org/10.1016/j.conbuildmat.2006.05.038.
- Guneyisi, E. and Mermerdas, K. (2007), "Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin", Mater. Struct., 40, 1161-1171. https://doi.org/10.1617/s11527-007-9258-5.
- Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2010), "Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments", ASCE J. Mater. Civil Eng., 22, 403-407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034.
- Guneyisi, E., Gesoglu, M., Booya, E. and Mermerdas, K. (2015a), "Strength and permeability properties of self compacting concrete with cold bonded fly ash lightweight aggregate", Constr. Build. Mater., 74, 17-24. https://doi.org/10.1016/j.conbuildmat.2014.10.032.
- Guneyisi, E., Gesoglu, M., Ghanim, H., Ipek, S. and Taha, I. (2016), "Influence of the artificial lightweight aggregate on fresh properties and compressive strength of the self-compacting mortars", Constr. Build. Mater., 116, 151-158. https://doi.org/10.1016/j.conbuildmat.2016.04.140.
- Guneyisi, E., Gesoglu, M., Ozturan, T. and Ipek, S. (2015b), "Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber", Constr. Build. Mater., 84, 156-168. https://doi.org/10.1016/j.conbuildmat.2015.03.054.
- Guneyisi, E., Gesoglu, M., Ozturan, T. and Mermerdas, K. (2012), "Microstructural properties and pozzolanic activity of calcined kaolins as supplementary cementing materials", Can. J. Civil Eng., 39, 1274-1284. https://doi.org/10.1139/cjce-2011-0586.
- Guneyisi, E.M., Mermerdas, K., Guneyisi, E. and Gesoglu, M. (2015), "Numerical modeling of time to corrosion induced cover cracking in reinforced concrete using soft-computing based methods", Mater. Struct., 48, 1739-1756. https://doi.org/10.1617/s11527-014-0269-8.
- Haykin, S. (2000), Neural Networks: A Comprehensive Foundation, 2nd Edition, Mac-millan College Publications Cooperation, New Jersey.
- Hebb, D.O. (1949), The Organization of Behavior, John Wiley and Sons Inc., New York.
- Ipek, S., Ayodele, O.A. and Mermerdas, K. (2020), "Influence of artificial aggregate on mechanical properties, fracture parameters and bond strength of concrete", Constr. Build. Mater., 238, 117756. https://doi.org/10.1016/j.conbuildmat.2019.117756.
- Japon Coal Energy Center (JCOAL) (2020), "Effective use of ash in civil engineering/construction and other applications", http://www.jcoal.or.jp/eng/cctinjapan/2_5C3.pdf.
- Jindal, B.B., Singhal, D., Sharma, S., Yadav, A., Shekhar, S. and Anand, A. (2017), "Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete", Comput. Concrete, 20(6), 683-688. https://doi.org/10.12989/cac.2017.20.6.683.
- Kayali, O. (2008), "Fly ash lightweight aggregates in high performance concrete", Constr. Build. Mater., 22, 2393-2399. https://doi.org/10.1016/j.conbuildmat.2007.09.001.
- Koza, J.R. (1992), Genetic Programming: on the Programming of Computers by Means of Natural Selection, 1st Edition, MIT Press, USA.
- Li, X., Zhou, C., Xiao, W. and Nelson, P.C. (2005), "Prefix gene expression programming", Late Breaking Paper at the Genetic and Evolutionary Computation Conference, Washington, USA.
- Lo, T.Y., Tang, W.C. and Cui, H.Z. (2007), "The effects of aggregate properties on lightweight concrete", Build. Environ., 42, 3025-3029. https://doi.org/10.1016/j.buildenv.2005.06.031.
- Manikandan, R. and Ramamurthy, K. (2007), "Influence of fineness of fly ash on the aggregate pelletization process", Cement Concrete Compos., 29, 456-464. https://doi.org/10.1016/j.cemconcomp.2007.01.002.
- Math Works (MatlabV.R2018) (2018), http://www.mathworks.com/help/.
- Mermerdas, K., Gesoglu, M., Guneyisi, E. and Ozturan, T. (2012), "Strength development of concretes incorporated with metakaolin and different types of calcined kaolins", Constr. Build. Mater., 37, 766-774. https://doi.org/10.1016/j.conbuildmat.2012.07.077.
- Minitab R12 (2020), Statistical Tool. Quality Plaza, 1829 Pine Hall Rd., State College, PA, USA, https://www.minitab.com/en-us/products/minitab/.
- Ramamurthy, K. and Harikrishman, K.I. (2006), "Influence of binders on properties of sintered fly ash aggregate", Cement Concrete Compos., 28, 33-38. https://doi.org/10.1016/j.cemconcomp.2005.06.005.
- Sabau, M. and Vargas, J.R. (2018), "Use of e-plastic waste in concrete as a partial replacement of coarse mineral aggregate.", Comput. Concrete, 21(4), 377-384. https://doi.org/10.12989/cac.2018.21.4.377.
- Sabir, B.B., Wild, S. and Bai, J. (2001), "Metakaolin and calcined clay as pozzolans for concrete: A review", Cement Concrete Compos., 23, 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5.
- Sata, V., Ngohpok, C. and Chindaprasirt, P. (2016), "Properties of pervious concrete containing high-calcium fly ash", Comput. Concrete, 17(3), 337-351. https://doi.org/10.12989/cac.2016.17.3.337.
- Schalkoff, R.J. (1997), Artificial Neural Networks, Columbus: McGraw-Hill.
- Senthamilselvi, P. and Palanisamy, T. (2018), "Experimental and analytical study on flexural behaviour of fly ash and paper sludge ash based geopolymer concrete", Comput. Concrete, 21(2), 157-166. https://doi.org/10.12989/cac.2018.21.2.157.
- Shu, C.Y. and Kuo, W.T. (2015), "Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing", Comput. Concrete, 16(3), 487-502. https://doi.org/10.12989/cac.2015.16.3.487.
- Susac, M.Z., Sarlija, N., Bensic, M. and Tortorelli, S. (2005), "Selecting neural network architecture for investment profitability predictions", J. Inform. Organ. Sci., 29(2), 83-95.
- Tang, C.W. (2014), "Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments", Comput. Concrete, 13(3), 325-342. https://doi.org/10.12989/cac.2014.13.3.325.
- Topcu, I.B. and Uygunoglu, T. (2007), "Properties of autoclaved lightweight aggregate concrete", Build. Environ., 42, 4108-4116. https://doi.org/10.1016/j.buildenv.2006.11.024.
- Turkish Standard (TS EN 197-1) (2012), Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements, Turkish Standards.
- Vali, K.S. and Murugan, S.B. (2020), "Effect of different binders on cold-bonded artificial lightweight aggregate properties", Adv. Concrete Constr., 9(2), 183-193. http://dx.doi.org/10.12989/acc.2020.9.2.183.
- Wild, S., Khatib, J.M. and Jones, A. (1996), "Relative strength, pozzolanic activity and cement hydration in superplasticized metakaolin concrete", Cement Concrete Res., 26, 1537-1544. https://doi.org/10.1016/0008-8846(96)00148-2.
- Zadeh, L.A. (1994), "Soft computing and fuzzy logic", IEEE Softw., 11(6), 48-56. https://doi.org/10.1109/52.329401.
Cited by
- Peak strength prediction of reinforced concrete columns in different failure modes based on gene expression programming vol.24, pp.16, 2020, https://doi.org/10.1177/13694332211026216