• Title/Summary/Keyword: synthetic lightweight aggregate

Search Result 24, Processing Time 0.023 seconds

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

The Mechanical Properties of Lightweight Concrete Using the Lightweight Aggregate Made with Recycled-plastic and high carbon fly ash (폐플라스틱과 고탄소 플라이애쉬 경량골재를 이용한 경량 콘크리트의 역학적 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.640-643
    • /
    • 2004
  • Synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5mm were produced with fly ash contents of 0 percent, 35 percent, and 80 percent by total mass of the aggregate. An expanded day lightweight aggregate and a normal-weight aggregate were used as comparison. Mechanical properties of the concrete determined included density, compressive strength, elastic modulus, and splitting tensile strength. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As fly ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved.

  • PDF

Engineering Properties of No-fines Concrete (No-fines Concrete의 공학적 특성)

  • 민정기;성찬용;김성완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.73-80
    • /
    • 1995
  • This study was carried out to investigate the engineering properties of no-fines con- crete, consisting only of coarse aggregate, cement and water. The used coarse aggregates were two, one is natural coarse aggregate grading 4.75~ lOmm, the other is synthetic lightweight coarse aggregate grading 3~8mm. The results of this study are summarized as follows; 1. The W/C ratio of each type was increased with increase of additional amount of coarse aggregate. 2. The unit weight of used ndtural coarse aggregate was shown 1.762~2.184g/cm$^3$, and synthetic lightweight coarse aggregate was shown 0.756 ~ 1 .348g/cm$^3$. 3. The ahsorption rate of used natural coarse aggregate was shown 8.4 ~ 9.4 %, and synthetic lightweight coarse aggregate was shown 17.0~42.4%. 4. The compressive, tensile and hending strength was decreased with increase of coarse aggregate, respectively. The compressive strength of natural coarse aggregate 1:3 was shown 309kg/cm$^2$. 5. The ultrasonic pulse velocity and dynamic medulus of elasticity of each type was de- creased with increase coarse aggregate, respectively. Also, the decreasing rate of the natural aggregate was larger than that of the synthetic lightweight coarse ag- gregate.

  • PDF

An Experimental Study on the Development of Lightweight Concrete (경량콘크리트의 개발에 관한 실험적 연구)

  • 김성완;성찬용;민정기;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.90-100
    • /
    • 1995
  • This study was performed to develop the lightweight concrete using synthetic lightweight aggregate and natural coarse aggregate. Mixing ratios were three types, the first type was mixed cement and synthetic lightweight fine aggregate (Type CP), the second type was mixed cement, synthetic lightweight fine aggregate and synthetic lightweight coarse aggregate (Type CPE), the third type was mixed cement, synthetic lightweight fine aggregate and natural coarse aggregate (Type CPN). The results of this study are summarized as follows ; 1. The W/C of each mixing ratio was increased with increase of the amount of cement used, and it was shown higher in order of Type CP, CPN, CPE. 2. The unit weight of Type CP, CPE and CPN was 1.473~1.647g/cm$^3$, 1.467~1.622g/cm$^3$ and 1.658~1 .838g/cm$^3$, respectively. And the absorption ratio was approximately 20%, which was higher than that of the normal cement concrete. 3. The compressive strength of Type CP was shown 178 ~249kg/cm2, Type CPE was shown 149~241kg/cm$^2$ and Type CPN was shown 196~297kg/cm$^2$, respectively. Each strength ratio was smaller than that of the normal cement concrete. 4. The pulse velocity of Type CP, CPE and CPN was 2, 688~3, 240m/sec, 2, 981~3, 324m/sec and 2, 989 ~ 3, 545m/sec, respectively. And it was increased with increase of strength and unit weight. 5. The length change ratio at 28 days was in the range of 0.057~0.077%, and earlier length change ratio was higher than that of the later.

  • PDF

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.325-342
    • /
    • 2014
  • The use of lightweight aggregate (LWA) instead of ordinary aggregate may make lightweight aggregate concrete, which possesses many advantages such as lightweight, lower thermal conductivity, and better fire and seismic resistance. Recently the developments of LWA have been focused on using industrial wastes as raw materials to reduce the use of limited natural resources. In view of this, the intent of this study was to apply Taguchi optimization technique in determining process condition for producing synthetic LWA by incorporating waste thin film transition liquid crystal displays (TFT-LCD) glass powder with reservoir sediments. In the study the waste TFT-LCD glass cullet was used as an additive. It was incorporated with reservoir sediments to produce LWA. Taguchi method with an orthogonal array L16(45) and five controllable 4-level factors (i.e., cullet content, preheat temperature, preheat time, sintering temperature, and sintering time) was adopted. Then, in order to optimize the selected parameters, the analysis of variance method was used to explore the effects of the experimental factors on the performances (particle density, water absorption, bloating ratio, and loss of ignition) of the produced LWA. The results showed that it is possible to produce high performance LWA by incorporating waste TFT-LCD glass cullet with reservoir sediments. Moreover, Taguchi method is a promising approach for optimizing process condition of synthetic LWA using recycled glass cullet and reservoir sediments and it significantly reduces the number of tests.

Influence of the Mixing Factor on the Properties of Concrete Used Artificial Lightweight Aggregates (인공경량골재를 사용한 콘크리트의 물성에 미치는 배합요인의 영향)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.73-77
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can be used widely for various purpose in the archtectural and civil structures. This paper were examined the influence of the mixing factor on the fresh and hardened properties of lightweight concrete that are used 2types of the differences properties of lightweight aggregates. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are have need higher s/a; 2~4% on mixing proportion. Lightweight concrete was somewhat exhibit lower compressive strength than ordinary concrete. However it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic the lightweight aggregate are highest performance in fresh and hardened concrete.

  • PDF

Development of Lightweight Polymer Concrete Using Synthetic Lightweight Aggregate and Application for Bottom Draining Structure (인공경량골재를 활용한 경량 폴리머 콘크리트의 개발 및 바닥배수구조물에의 적용)

  • 성찬용;김영익;윤준노
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.846-851
    • /
    • 2003
  • This study was performed to develop the lightweight polymer concrete using expanded clay and perlite to improve workability, durability and chemical resistance for bottom draining structure under severe condition. This paper was composed of two parts. One is to invest the physical and mechanical properties of lightweight polymer concrete using synthetic lightweight aggregate, the other is to the develop products for bottom draining structure. Physical and mechanical test for lightweight polymer concrete was performed unit weight, compressive and flexural strength, chemical resistance, accelerated weathering test, absorption ratio and optimum mix for lightweight polymer concrete was designed. Also, products for bottom draining structures by optimum mix of lightweight polymer concrete was made draining trench of small size.

  • PDF

An Experimental Study on the Performance Evaluation of Lightweight Foamed Concrete According to Size and Replacing Ratio of Artificial Lightweight Aggregate (인공경량골재 크기 및 혼입량에 따른 경량기포콘크리트의 물리적 성능 평가에 관한 실험적 연구)

  • Jeong, Seong-Min;Yun, Chang-Yeon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.162-163
    • /
    • 2017
  • This study investigated the properties of lightweight foamed concrete by using synthetic foaming agent and artificial lightweight aggregate. The effects of artificial lightweight sizes on the compressive strength, density and pore structure of the concrete were investigated. The samples were assessed by MIP analysis and simultaneous SEM was used to study their pore distribution. This study showed the improvement of important properties of lightweight foamed concrete. Lower pore distribution and correspondingly higher compressive strength values were reached. This is for the purpose of providing basic data for the use of lightweight foamed concrete through improvement on the problem such as unstability, falling in fluidity and the strength of existed foaming agent.

  • PDF

Development of High Strength Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량 굵은골재를 사용한 고강도 경량콘크리트의 개발)

  • Kim, Young-Ik;Park, Il-Soon;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.189-192
    • /
    • 2001
  • This study is peformed to develop high strength lightweight concrete using synthetic lightweight coarse aggregate. The following conclusions are drawn; The unit weight is in the range of $1,855{\sim}1,883kgf/m^{3}$, which has showed about 75% that of normal cement concrete. The compressive strength is in the range of $240{\times}249kgf/cm^{2}$, the tensile strength is in the range of $30{\sim}33kgf/cm^{2}$ and the bending strength is in the range of $41{\sim}50kgf/cm^{2}$ at the age 7days. The high strength lightweight concrete which is contained fly ash within 10% is showed highest strength.

  • PDF